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A hydrodynamic description for an s-component mixture of inelastic, smooth hard disks �two dimensions� or
spheres �three dimensions� is derived based on the revised Enskog theory for the single-particle velocity
distribution functions. In this first part of the two-part series, the macroscopic balance equations for mass,
momentum, and energy are derived. Constitutive equations are calculated from exact expressions for the fluxes
by a Chapman-Enskog expansion carried out to first order in spatial gradients, thereby resulting in a Navier-
Stokes order theory. Within this context of small gradients, the theory is applicable to a wide range of
restitution coefficients and densities. The resulting integral-differential equations for the zeroth- and first-order
approximations of the distribution functions are given in exact form. An approximate solution to these equa-
tions is required for practical purposes in order to cast the constitutive quantities as algebraic functions of the
macroscopic variables; this task is described in the companion paper.
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I. INTRODUCTION

Flows of polydisperse particles �mixtures� are ubiquitous
in nature and industry alike. Examples of the former include
pyroclastic flows, landslides, pollutant transport, and plan-
etary rings. Examples of the latter include pneumatic con-
veying of grains, ores, and chemicals; fluidized-bed opera-
tion for power production and catalytic cracking; and mixing
of pharmaceutical powders �medication and binder� and
poultry feedstock �grains and vitamins�. A nonuniform par-
ticle distribution may be a property of the starting material
itself, or it may be intentionally utilized in order to improve
process performance. For an example of the latter, the addi-
tion of fines to a relatively monodisperse material has been
shown to �i� decrease attrition in high-speed conveying lines
�1�, �ii� increase conversion in high-velocity, fluidized-bed
reactors �2�, and �iii� improve heat transfer efficiency in a
circulating fluidized bed �CFB� combustor �3�. Polydisperse
materials are also known to exhibit counterintuitive behav-
iors that have no monodisperse counterpart. For example,
agitation of polydisperse materials via vibration, free-fall, or
flow down an incline leads to segregation among unlike par-
ticles �demixing�. Enhancing or suppressing this segregation
tendency may be critical to process performance, depending
on whether the desired outcome is a separated or well-mixed
state, respectively.

In the current effort, attention is restricted to rapid flows,
in which particle collisions are assumed to be both binary
and instantaneous in nature. For monodisperse systems,

kinetic-theory-based treatments have been successful at pre-
dicting not only rapid granular flows �in which the role of the
interstitial fluid is assumed negligible�, but have also been
incorporated into models of high-velocity, gas-solid systems.
In particular, kinetic-theory-based descriptions are now
standard components in both commercial and open-source
CFD �computational fluid dynamics� software packages
for multiphase flows such as Fluent® and MFIX �http://
www.mfix.org/�, respectively. Nonetheless, the development
and application of kinetic-theory-based descriptions for poly-
disperse systems are in their infancy relative to their mono-
disperse counterparts, as has been highlighted in several re-
cent review articles and perspectives �4–7�. The main
challenge associated with the derivation of kinetic-theory-
based descriptions for mixtures is the increased complexity
associated with the additional hydrodynamic fields and asso-
ciated transport coefficients, and in particular with the accu-
rate evaluation of the collisions integrals. Correspondingly,
many of the early contributions resorted to assumptions
which are only strictly true in the limit of perfectly elastic
spheres in a uniform steady state: a Maxwellian �single-
particle� velocity distribution �8–10� or an equipartition of
energy �11–14�. However, the presence of a non-Maxwellian
velocity distribution in granular flows is well-documented
�15–22� and has been shown to have a significant impact on
some transport coefficients �23�. Moreover, a nonequiparti-
tion of energy between unlike particles is widely established
�24–32�, and has been shown to significantly contribute to
the driving force for segregation �33� and to lead to a rever-
sal of the segregation direction �34–36� in certain systems. A
more recent theory �37� involves the lifting of both of these
assumptions, except in the evaluation of collision integrals
involving two unlike particles, in which case a Maxwellian
velocity distribution is assumed for each particle type. Two
current theories exist that do not involve either of these as-

*Electronic address: vicenteg@unex.es
†Electronic address: dufty@phys.ufl.edu
‡Electronic address: hrenya@colorado.edu

PHYSICAL REVIEW E 76, 031303 �2007�

1539-3755/2007/76�3�/031303�27� ©2007 The American Physical Society031303-1

http://dx.doi.org/10.1103/PhysRevE.76.031303


sumptions �38,39�, though both are based on the Boltzmann
equation and thus are limited to dilute flows. Another key
difference between existing polydisperse theories is the base
state used in the Chapman-Enskog �CE� expansion. Some
theories �8–14,37,39� assume an expansion about a perfectly
elastic �molecular equilibrium� base state, and thus are re-
stricted to nearly elastic systems. However, in the CE method
the base state must not be chosen a priori, but rather it is
determined as the solution to the kinetic equation to zeroth
order in the gradient expansion. This solution is found to
correspond to the local homogeneous cooling state �HCS�
and was used in Ref. �38� as the reference state to determine
the Navier-Stokes transport coefficients of a dilute mixture,
without any restriction on the level of inelasticity.

The objective of the current effort is twofold. First, a
kinetic-theory-based description for the flow of an
s-component mixture in d dimensions is derived which �i�
incorporates non-Maxwellian and nonequipartition effects,
�ii� is applicable to a wide range of restitution coefficients,
and �iii� is applicable to both dilute and �moderately� dense
flows. In particular, a CE expansion of the revised Enskog
theory for inelastic, hard spheres is carried out for both disks
�d=2� and spheres �d=3� up to the Navier-Stokes order. Sec-
ond, the derivation of the resulting theory is critically com-
pared and contrasted to that of existing theories, in an effort
to clearly reveal the implications of various treatments on
both the governing equations and constitutive relations. For
this reason, the derivation is presented in a detailed and
somewhat pedagogical fashion. This work takes the form of
two self-contained, companion papers. In this first paper, the
results of the exact analysis are given. The follow-up paper
details the leading order approximations needed for the ex-
plicit evaluation of all properties derived here: the distribu-
tion functions, the “equations of state” �cooling rate and
pressure�, and the transport coefficients. In addition, the
methodology used to obtain these results is critically com-
pared there to that of previous theories.

A confusing issue in the granular community is the con-
text of the Navier-Stokes hydrodynamic equations in freely
cooling granular gases derived in this paper. The expressions
for the Navier-Stokes transport coefficients are not limited to
weak inelasticity and so the calculations provided here apply
even for strong dissipation. The Navier-Stokes hydrody-
namic equations may or may not be limited with respect to
inelasticity, depending on the particular states analyzed. The
CE method assumes that the relative changes of the hydro-
dynamic fields over distances of the order of the mean free
path are small. For ordinary �elastic� gases this can be con-
trolled by the initial or boundary conditions. However, in the
case of granular fluids the situation is more complicated
since in some cases �e.g., steady states such as the simple
shear flow problem �40�� the boundary conditions imply a
relationship between dissipation and gradients so that both
cannot be chosen independently. In these cases, the Navier-
Stokes approximation only holds for nearly elastic particles
�40�. However, the transport coefficients characterizing the
Navier-Stokes hydrodynamic equations are nonlinear func-
tions of the coefficients of restitution, regardless of the ap-
plicability of those equations.

In spite of the above cautions, the Navier-Stokes approxi-
mation is relevant to describe a wide class of granular flows.

One of them corresponds to spatial perturbations of the HCS
for an isolated system. Computer simulations have confirmed
the accuracy of the Navier-Stokes hydrodynamic equations
with their associated transport coefficients to quantitatively
describe cluster formation �41�. The same kinetic theory re-
sults apply to driven systems as well. This is so since the
reference state is a local HCS whose parameters change
throughout the system to match the physical values in each
cell. Other examples of good agreement between theory and
simulation �42� and experiments �43,44� include the applica-
tion of the Navier-Stokes hydrodynamics to describe density-
temperature profiles in vertical vibrated gases, supersonic
flow past a wedge in real experiments �45�, and nonequipar-
tition and size segregation in agitated granular mixtures
�27,28,46�. In summary, the Navier-Stokes hydrodynamics
with the constitutive equations obtained in this paper consti-
tute an important and useful description for many different
physical situations, although more limited than for elastic
gases.

II. OVERVIEW OF DERIVATION

The theoretical basis for a hydrodynamic description of
molecular gases is most completely established at low den-
sity using the Boltzmann kinetic equation. There, the CE
solution and its prediction of transport coefficients is well-
established from both computer simulation and experiment
�47�. For a moderately dense gas there is no accurate and
practical generalization of the Boltzmann equation except for
the idealized hard sphere fluid. In that case, the Enskog ki-
netic equation describes the dominant positional corrections
to the Boltzmann equation due to excluded volume effects of
other particles on a colliding pair �47�. The neglected veloc-
ity correlations are important only at much higher densities.
The derivation of hydrodynamics and evaluation of transport
coefficients based on the Enskog kinetic equation leads to an
accurate and unique description of moderately dense gases.
The generalization to mixtures requires a revision of the
original Enskog theory for thermodynamic consistency �re-
vised Enskog theory �RET�� �48�, and its application to hy-
drodynamics and mixture transport coefficients was accom-
plished 20 years ago �49�. As noted above, for granular
�dissipative� gases, there remains an open problem of pre-
dicting transport properties at moderate densities, as occurs
in current experiments and simulations. This problem is ad-
dressed here in its full generality using the extension of this
revised Enskog theory to inelastic collisions without limits
on the number of components, densities, temperature, or de-
gree of dissipation. This subsumes all previous analyses for
both molecular and granular gases, which are recovered in
the appropriate limits.

Due to the extreme length of the derivation, an outline of
the steps involved is given here for easy reference.

Section III. The starting point of the derivation process is
the revised Enskog kinetic equations for mixtures of inelas-
tic, hard spheres. These equations for the single-particle, po-
sition, and velocity distribution functions of each species,
�f i�, take the form of nonlinear, integrodifferential equations,
where the integral portion arises from the collision operator.
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Section IV. The macroscopic variables of interest �number
density �ni�, etc.� are defined exactly in terms of moments of
�f i� �e.g., ni�r�=�dvf i�r ,v , t�, where v is the velocity of spe-
cies i�. Thus the macroscopic balance equations can be ob-
tained by appropriate manipulation of the Enskog kinetic
equations �e.g., multiplication by dv followed by integration
over the velocity to obtain the species mass balance�. At this
stage, all of the constitutive quantities �cooling rate, stress
tensor, conduction, and mass flux� appearing in the macro-
scopic balances are integral functionals of �f i�, which depend
explicitly on space and time only through their dependence
on �f i�.

Section V. In order to obtain a hydrodynamic description
�one in which the constitutive quantities are determined en-
tirely by the macroscopic or hydrodynamic variables�, the
concept of a normal solution is introduced. These are special
solutions to the Enskog equations for which the �f i� depend
on space and time only through an implicit functional depen-
dence on the macroscopic fields �or equivalently as explicit
functions of these local fields and their gradients at the spa-
tial point of interest�.

Section VI. An exact analytical solution for �f i� is not a
practical objective in the most general case, and thus atten-
tion is restricted to states with small spatial gradients. In this
case the gradients provide a small parameter, allowing a
small spatial gradients, or small Knudsen number, expansion
�i.e., the CE expansion�. The analysis is carried out here to
first �Navier-Stokes� order: f i= f i

�0�+ f i
�1�, where f i

�0� is the ze-
roth order solution and f i

�1� is the first-order correction �zero-
and first-order in gradients, respectively�. The kinetic equa-
tions then become integral-differential equations for the de-
termination of f i

�0� and f i
�1�.

Section VII. Correspondingly, the constitutive equations
are identified as functions of the hydrodynamic variables and
their gradients through their dependence on �f i�, with coeffi-
cients of the gradients defining the transport coefficients.
Hence all equations of state �pressure and reference state
cooling rate� and all transport coefficients, which are inte-
grals involving f i

�0�, inherit this dependence on the hydrody-
namic variables and their gradients. The coefficients are de-
termined from solutions to the integral equations.

This completes the derivation reported in this paper. Up
until this point, the results are exact for Navier-Stokes order
hydrodynamics �first order in spatial gradients� of the RET.
This determines the form of the Navier-Stokes hydrodynam-
ics, but more explicit dependence of the transport coeffi-
cients on the macroscopic variables requires a corresponding
explicit solution to the integral equations for f i

�0� and f i
�1�.

One approximate method, known to be accurate for ordinary
fluids, is detailed in the follow-up paper �50�, resulting in
constitutive quantities that are algebraic functions of the
macroscopic variables.

III. REVISED ENSKOG KINETIC THEORY

The system considered is a mixture of �Ni� smooth hard
disks �d=2� or spheres �d=3� of masses �mi� and diameters
��i�, where the subscript i labels one of the s mechanically

different species and d is the dimension. In general, colli-
sions among all pairs are inelastic and are characterized by
independent constant normal restitution coefficients ��ij

=� ji�, where �ij is the restitution coefficient for collisions
between particles of species i and j, 0��ij �1. The macro-
scopic �or hydrodynamic� properties of interest �number den-
sities, flow velocity, and energy density� are determined from
the single particle position and velocity distribution functions
f i�r1 ,v1 ; t�, for i=1, . . . ,s, where f i�r1 ,v1 ; t�dr1dv1 is propor-
tional to the probability to find a particle of species i in the
position and velocity element dr1dv1 at time t. The funda-
mental description of any system is based on the probability
density for all constituent particles and the Liouville equa-
tion for its time evolution; this is equivalent to solving the
collective equations of motion for all particles in the system
and becomes computationally prohibitive for a large number
of particles. However, for the macroscopic fields only the
reduced distribution functions �f i�, obtained from the integra-
tion of the probability density over all except one particle’s
position and velocity for each of the species, are required for
calculation of the macroscopic properties. The equations for
these reduced distribution functions resulting from the partial
integrations of the Liouville equation, give rise to the
Bogoliubov-Born-Green-Kirkwood-Yvon �BBGKY� hierar-
chy equations. The first level of this hierarchy gives the time
dependence of �f i� �51,52�

��t + v1 · �r1
+ mi

−1Fi�r1� · �v1
�f i�r1,v1;t� = Ci�r1,v1;t� ,

�3.1�

where

Ci�r1,v1;t� = �
j=1

s

�ij
d−1	 dv2	 d�̂���̂ · g12���̂ · g12�

� ��ij
−2f ij�r1,v1�,r1 − �ij,v2�;t�

− f ij�r1,v1,r1 + �ij,v2;t�� . �3.2�

The left sides of these equations describe changes in the
distribution functions due to motion in the presence of exter-
nal conservative forces Fi�r1�. The right side describes
changes due to collisions among the particles. The function
f ij�r1 ,v1 ,r2 ,v2 ; t�dr1dv1dr2dv2 is proportional to the joint
probability of finding a particle of species i in dr1dv1 and
one of species j in dr2dv2. The position r2 in these functions
appears only for r2=r1±�ij, where �ij = �̂�ij and �ij 
��i

+� j� /2; this means that the two particles are at contact. The
vector �̂ is a unit vector directed along the line of centers
from the sphere of species j to that of species i at contact and
the integration d�̂ is over a solid angle for this contact
sphere. The Heaviside step function � assures that the rela-
tive velocities g12=v1−v2 are such that a collision takes
place, and the “restituting” �precollisional� velocities v1� and
v2� are related to the postcollisional velocities by

v1� = v1 − 	 ji�1 + �ij
−1���̂ · g12��̂ ,
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v2� = v2 + 	ij�1 + �ij
−1���̂ · g12��̂ , �3.3�

where 	ij =mi / �mi+mj�. It is convenient for the discussion
here to write that equation in a more symbolic form by in-
troducing the notation

X�v1�,v2�� = bij
−1X�v1,v2� , �3.4�

so that bij
−1 is a general substitution operator that changes the

argument of a function to its precollision velocities given by
Eq. �3.3�. Then, changing variables �̂→−�̂ in the second
term on the right side of Eq. �3.1� and noting that
bij

−1�̂ ·g12=−�ij
−1�̂ ·g12 gives the equivalent form �51,52�

��t + v1 · �r1
+ mi

−1Fi�r1� · �v1
�f i�r1,v1;t�

= − �
j=1

s

�ij
d−1	 dv2	 d�̂��ij

−1bij
−1 + 1���̂ · g12�

���− �̂ · g12�f ij�r1,v1,r1 − �ij,v2;t� . �3.5�

This demonstrates that the two particle distributions f ij ap-
pear only on the contact hemisphere given by ��−�̂ ·g12�,
correponding to particles that are directed toward each other
and hence have a change in their velocities.

Equation �3.1� becomes a kinetic theory �i.e., closed equa-
tions for the set of f i� only after specifying f ij on the right
side as a functional of the set of f i �the alternative of making
approximations at higher levels of the BBGKY hierarchy has
not been productive in general for molecular gases�. As in-
dicated above, this is required for f ij only when the particles
are at contact and on that hemisphere for which the relative
velocities are directed toward each other. In this restricted
context, the Enskog kinetic theory results from a neglect of
velocity correlations, i.e., the Enskog approximation

f ij�r1,v1,r2,v2;t� → 
ij�r1,r2��ni��f i�r1,v1;t�f j�r2,v2;t� .

�3.6�

Spatial correlations arising from volume exclusion effects
are retained through the factor 
ij�r1 ,r2 � �ni��. In the special
case of a uniform system, it is simply related to the nonequi-
librium pair correlation function gij��r1−r2� ; �ni�� �probabil-
ity density to find a particle of species i at r1 and j at r2� by
�53�

gij��ij;�nk�� =
1 + �ij

2�ij

ij��ij;�nk�� . �3.7�

This relationship is proved in Appendix A and provides some
partial interpretation for 
ij. It is important to note that these
correlation functions are functionals of the actual species
densities �ni� �defined below in Eq. �4.1��. This functional
dependence is what distinguishes the RET from the original
“standard” Enskog theory �SET�, where the gij are functions
of the species densities at the single position of interest, r1.
Some partial justification for the approximation �3.6� for or-
dinary atomic fluids is given in Appendix A, where it is
known to provide accurate results for moderately dense
gases, and reasonable estimates even for dense gases. Its use
for granular gases is justified largely from expectations based
on these results for ordinary fluids.

Substitution of the Enskog approximation �3.6� into the
exact first level hierarchy equations �3.1� defines the RET for
the distribution functions �f i�

��t + v1 · � + mi
−1Fi�r1� · �v1

�f i�r1,v1;t� = �
j=1

s

Jij�r1,v1�f�t�� .

�3.8�

The collision operators �Jij�r1 ,v1 � f�t��� are given by

Jij�r1,v1�f�t�� 
 �ij
d−1	 dv2	 d�̂���̂ · g12���̂ · g12�

���ij
−2
ij�r1,r1 − �ij��ni��

�f i�r1,v1�;t�f j�r1 − �ij,v2�;t�

− 
ij�r1,r1 + �ij��ni��f i�r1,v1;t�

�f j�r1 + �ij,v2;t�� . �3.9�

The corresponding Boltzmann equations for a dilute mixture
follow from this result since 
ij�r1 ,r1−�ij � �ni��→1 at low
density. Furthermore, on length scales of the order of the
mean free path or greater, the different centers �r1 ,r2

=r1±�ij� of the colliding pair in Eq. �3.9� can be neglected
�r1�r2� since the diameters of the particles are small com-
pared to the mean free path at low density. As will be shown
below, a nonzero distance between the particle centers gives
rise to the collisional contributions to the transport coeffi-
cients, which are not present in dilute systems. These two
modifications to f ij result in the usual Boltzmann description
for a granular mixture. The results obtained here therefore
encompass earlier work on granular mixtures at low density
�38�. In the elastic limit, �ij→1, these equations become the
Enskog theory for mixtures of dense molecular gases studied
in Ref. �49�.

As happens for elastic collisions, the inelastic Enskog
equation provides a semiquantitative description of the hard
sphere system that neglects the velocity correlations between
the particles that are about to collide �molecular chaos as-
sumption�. The Enskog approximation is expected to be
valid for short times since as the system evolves corrections
to the Enskog equation due to multiparticle collisions, in-
cluding recollision events �“ring” collisions�, should be in-
corporated. The latter are expected to be stronger for fluids
with inelastic collisions where the colliding pairs tend to be
more focused. Therefore some deviations from molecular
chaos have been observed in molecular dynamics �MD�
simulations �54–56� of granular fluids as the density in-
creases. Although the existence of these correlations restricts
the range of validity of the Enskog equation, there is sub-
stantial evidence in the literature for the validity of the En-
skog theory at moderate densities and higher restitution co-
efficients especially at the level of macroscopic properties
�such as transport coefficients�. In the case of molecular dy-
namics �MD� simulations, the Enskog theory compares quite
well with simulations for the radial distribution function
�53�, the self-diffusion coefficient �57,58�, the kinetic tem-
peratures of a binary mixture in homogeneous cooling state
�59�, and the rheological properties of a mixture under
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simple shear flow �60,61�. The agreement between the MD
and Enskog equation is good for moderate densities �solid
volume fraction up to 0.15� and even conditions of strong
dissipation �restitution coefficients �ij �0.7�. For higher den-
sities the � range is more limited but the Enskog theory still
captures the relevant qualitative features. The Enskog trans-
port coefficients for a monocomponent gas �62� have also
been tested against NMR experiments of a system of mustard
seeds vibrated vertically �43,44�. The average value of the
coefficient of restitution of the grains used in this experiment
is �=0.87, which lies outside of the quasielastic limit ��
�0.99�. Comparison between theory and experiments shows
that the Enskog kinetic theory successfully models the den-
sity and granular temperature profiles away from the vibrat-
ing container bottom and quantitatively explains the tem-
perature inversion observed in experiments �63�. All these
results clearly show the applicability of the Enskog theory
for densities outside the Boltzmann limit and values of dis-
sipation beyond the quasielastic limit. In this context, one
can conclude that the Enskog equation provides a unique
basis for the description of dynamics across a wide range of
densities, length scales, and degrees of dissipation. No other
theory with such generality exists.

IV. MACROSCOPIC BALANCE EQUATIONS

In the previous section, the Enskog assumption �3.6� was
used to obtain a closed set of kinetic equations �3.8� for a
moderately dense mixture of inelastic hard spheres. The re-
sult takes the form of nonlinear, integral-differential equa-
tions for the distribution function f i, which contains informa-
tion on a microscopic scale. In this section, this theory will
be used to obtain the corresponding description on the mac-
roscopic �or hydrodynamic� scale. First, the relevant macro-
scopic variables will be identified and defined. Next, the cor-
responding balance equations will be derived. Finally,
expressions for the equations of state �pressure and cooling
rate� and fluxes will be presented as integral expressions con-
taining f i.

The variables of interest for a macroscopic description of
the mixture are the number densities for all species, �ni�r , t��
�or equivalently, the mass densities ��i�r , t�=mini�r , t���, the
total energy density, e�r , t�, and the total momentum, p�r , t�.
These are expected to be the s+1+d slow variables that
dominate the dynamics for long times through a closed au-
tonomous set of equations, the hydrodynamic equations. The
reasoning behind this is that these are the densities for global
conserved quantities in molecular fluids, and therefore have
decay times set by the wavelength of the excitations. Long
wavelength �space scales large compared to the mean free
path� phenomena therefore persist at long times �compared
to a mean free time� after which the complex transient mi-
croscopic dynamics has become negligible. For granular flu-
ids, the energy is not conserved but is characterized by a
cooling rate at long wavelengths. Still, this cooling rate may
be slow compared to the transient dynamics and thus the
energy remains a relevant slow variable. This is confirmed
by MD simulations showing a rapid approach to this cooling
law after only a few collisions �59�.

These macroscopic variables will be referred to collec-
tively as the hydrodynamic fields. They are defined without
approximation in terms of moments of the distribution func-
tions

ni�r,t� 
 	 dvf i�r,v;t�, i = 1, . . . ,s , �4.1�

e�r,t� 
 �
i=1

s 	 dv
1

2
miv

2f i�r,v;t� , �4.2�

p�r,t� 
 �
i=1

s 	 dvmivf i�r,v;t� . �4.3�

The time dependence occurs entirely through the distribution
function and hence is determined from the Enskog kinetic
equations �3.8�. However, rather than solving the kinetic
equation to determine this complete time dependence it is
useful for the purposes of deriving the simpler hydrodynamic
description to first obtain the balance equations. These equa-
tions express the time derivative of the hydrodynamic fields
in terms of local fluxes and sources due to collisions or the
external force. These equations and the identification of the
fluxes follow in detail from the form of the collision opera-
tors in Eq. �3.2� as shown in Appendix B �in fact they are
obtained there exactly from the first hierarchy equation �3.1�
without the Enskog approximation �3.6� and hence are ex-
act�. The results for the balance equations are

�tni�r,t� + mi
−1� · ji�r,t� = 0, �4.4�

�te�r,t� + � · s�r,t� = − w�r,t� + �
i=1

s

mi
−1Fi�r� · ji�r,t� ,

�4.5�

�tp
�r,t� + �r�
t�
�r,t� = �

i=1

s

ni�r,t�Fi
�r� . �4.6�

The explicit expressions for ji, s, w, and t�
 are contained in
Appendix B and not shown here since they are cast in a more
convenient form below.

The mass fluxes �ji�r , t��, energy flux s�r , t�, and momen-
tum flux t
��r , t� describe the rate of transport of the hydro-
dynamic fields through a given cross-sectional area. They
consist of parts due to pure convection and parts due to col-
lision. To identify the convective �kinetic� parts, the local
flow field U�r , t� is defined in terms of the momentum den-
sity by

p�r,t� 
 ��r,t�U�r,t�, ��r,t� = �
i=1

s

mini�r,t� , �4.7�

where the second equation defines the mass density. Also, the
energy density is written in terms of the internal energy den-
sity e0�r , t� in the local rest frame, plus the energy due to
flow
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e�r,t� = e0�r,t� +
1

2
��r,t�U2�r,t� . �4.8�

In terms of U�r , t� the fluxes become

ji�r,t� = �i�r,t�U�r,t� + j0i�r,t� , �4.9�

s
�r,t� = 
e0�r,t� +
1

2
��r,t�U2�r,t��U
�r,t�

+ P
��r,t�U��r,t� + q
�r,t� , �4.10�

t
��r,t� = ��r,t�U
�r,t�U��r,t� + P
��r,t� . �4.11�

The first terms on the right sides describe convective trans-
port, while the diffusion fluxes j0i�r , t�, heat flux q�r , t�, and
pressure tensor P
��r1 , t� describe the residual transport for
each fluid element in its local rest frame. Before giving their
forms more explicitly, it is instructive to insert Eqs.
�4.9�–�4.11� into Eqs. �4.4�–�4.6� to get the equivalent form
for the balance equations

Dtni + ni� · U + mi
−1� · j0i = 0, �4.12�

Dte0 + �e0��
 + P�
��r�
U
 + � · q

= − w�r,t� + �
i=1

s

mi
−1Fi�r� · j0i�r,t� , �4.13�

�DtU
 + �r�
P�
 = �

i=1

s

ni�r,t�Fi
�r� , �4.14�

where Dt=�t+U ·� is the material derivative.
The independent hydrodynamic fields are now �ni�r , t��,

e0�r , t�, and U�r , t�. The remaining quantities in the balance
equations are the energy loss rate w�r , t�, the mass fluxes
�j0i�r , t��, the heat flux q�r , t�, and the pressure tensor
P
��r1 , t�. These quantities, which are defined in terms of the
distribution functions, are obtained by the explicit forms for
ji, s, w, and t�
 given in Appendix B together with Eqs.
�4.9�–�4.11�.

Specifically, the energy loss rate is due to inelastic colli-
sions

w�r,t� 

1

4 �
i,j=1

s

�1 − �ij
2 �mi	 ji�ij

d−1	 dv1	 dv2	 d�̂

� ���̂ · g12���̂ · g12�3f ij�r1,v1,r1 + �ij,v2;t� ,

�4.15�

whereas the diffusion flux arises from convective �kinetic�
transport

j0i�r1,t� 
 mi	 dv1V1f i�r1,v1;t� , �4.16�

where V1=v1−U�r , t� is the velocity in the local rest frame.
The heat flux has both “kinetic” and “collisional” transfer
contributions

q�r1,t� 
 qk�r1,t� + qc�r1,t� , �4.17�

with

qk�r1,t� = �
i=1

s 	 dv1
1

2
miV1

2V1f i�r1,v1;t� , �4.18�

qc�r1,t� = �
i,j=1

k
1

8
�1 + �ij�mj	ij�ij

d

�	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12�2��1 − �ij�

��	 ji − 	ij���̂ · g12� + 4�̂ · Gij��̂	
0

1

dxfij

�„r1 − x�ij,v1,r1 + �1 − x��ij,v2;t… , �4.19�

where Gij =	ijV1+	 jiV2 is the center-of-mass velocity.
Similarly, the pressure tensor has both kinetic and colli-

sional contributions

P�
�r1,t� 
 P�

k �r1,t� + P�


c �r1,t� , �4.20�

where

P�

k �r1,t� = �

i=1

s 	 dv1miV1
V1�f i�r1,v1;t� , �4.21�

P�

c �r1,t� =

1

2 �
i,j=1

s

mj	ij�1 + �ij��ij
d

�	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12�2�̂
�̂�

�	
0

1

dxfij„r1 − x�ij,v1,r1 + �1 − x��ij,v2;t… .

�4.22�

Equations �4.12�–�4.14� together with the definitions
�4.15�–�4.22� represent the macroscopic balance equations
for a granular mixture, without restrictions on the densities
or degrees of dissipation. In the case of a three-dimensional
system �d=3�, the above equations reduce to previous results
�64� derived for hard spheres. When the approximate form
�3.6� is used in the first hierarchy equation and in these ex-
pressions for the cooling rate and fluxes, the Enskog theory
results.

For historical consistency with the usual constitutive
equations for an ordinary fluid, the temperature T�r , t� is
used in the following instead of the internal energy density
e0�r , t�, with the definition

e0�r,t� 

d

2
n�r,t�T�r,t� . �4.23�

As a definition, this amounts only to a change of variables
and there are no thermodynamic implications involved in the
use of this temperature for a granular fluid. The correspond-
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ing hydrodynamic equation for T�r , t� follows directly from
Eq. �4.13�,

d

2
n�Dt + ��T + P�
�r�

U
 + � · q −
d

2
T�

i=1

s

mi
−1� · j0i

= �
i=1

s

mi
−1Fi · j0i. �4.24�

To obtain these results the continuity equation has been used,

Dt� + �� · U = 0. �4.25�

This follows from the definitions of � and U and the conser-
vation laws for the �ni�r , t��. A related consequence is

�
i=1

s

j0i = 0, �4.26�

so that only s−1 dissipative mass fluxes are independent.
Finally, the “cooling rate” � has been introduced in Eq.
�4.24� by the definition

� =
2

dnT
w =

1

2dnT
�
i,j=1

s

�1 − �ij
2 �mi	 ji�ij

d−1

�	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12�3

�f ij�r1,v1,r1 + �ij,v2;t� . �4.27�

V. CONCEPT OF A NORMAL SOLUTION
AND HYDRODYNAMICS

The form of the equations of state and fluxes given in the
previous section, Eqs. �4.16�–�4.22� and �4.27�, are cast as
functionals of the distributions �f i�, which depend explicitly
on space and time. As a result, the macroscopic balance
equations are not entirely expressed in terms of the hydrody-
namic fields, and thus do not comprise a closed set of equa-
tions. If these distributions can instead be expressed as func-
tionals of the hydrodynamic fields �normal solution�, then
��r , t�, �j0i�r , t��, q�r , t�, and P
��r1 , t� also will become
functionals of the hydrodynamic fields through Eqs.
�4.16�–�4.22� and �4.27�. Such expressions are called “con-
stitutive relations.” They provide the missing link between
the balance equations and a closed set of equations for the
hydrodynamic fields alone. Such a closed set of equations
defines “hydrodynamics” in its most general sense.

It is seen, therefore, that any derivation of hydrodynamics
proceeds first by construction of normal solutions to the ki-
netic equations. More precisely, a normal solution is one
whose space and time dependence occurs entirely through
the hydrodynamic fields, denoted

f i�r1,v1;t� = f i„v1��y
�r1,t��… , �5.1�

where �y
�r1 , t�� denotes generically the set of hydrodynamic
fields

y
 ⇔ ˆT,U,�ni�r,t��‰ . �5.2�

Therefore the space and time derivatives of the kinetic equa-
tion are given by

��t + v1 · �r�f i„v1��y
�r1,t��… =	 dr
�f i„v1��y
�t��…

�y��r;t�

���t + v1 · �r�y��r;t� .

�5.3�

Furthermore, the balance equations for the hydrodynamic
fields �4.12�–�4.14� can be used to express �ty��r ; t� in Eq.
�5.3� in terms of space derivatives of the hydrodynamic
fields. For such a solution for f i, Eqs. �4.16�–�4.22� and
�4.27� give directly by integration the desired constitutive
relations.

The determination of f i(v1 � �y
�r1 , t��) from the kinetic
equations �3.8� is a very difficult task in general, and further
restriction on the class of problems considered is required at
this point to make progress. Any functional of the fields can
be represented equivalently as a local function of the fields
and all of their gradients. In many cases, gradients of high
degree are small and may be negligible so that the normal
distribution becomes

f i„v1��y
�r1,t��… → f i„v1;�y
�r1,t�,�r1
y
�r1,t�, . . . �… .

�5.4�

This representation does not imply that the low degree gra-
dients are small, and f i may be a nonlinear function of the
relevant gradients. This occurs in many important applica-
tions for granular fluids �40�. In the limiting case where the
low-degree gradients can be controlled by boundary or initial
conditions and made small, a further Taylor series expansion
can be given,

f i„v1��y
�r1,t��… → f i
�0�
„v1;�y
�r1,t��…

+ f i
�1�
„v1;�y
�r1,t��… + ¯

→ f i
�0�
„v1;�y
�r1,t��…

+ Yi�„v1;�y
�r1,t��… · �r1
y��r1,t� + ¯ .

�5.5�

It follows that the leading order distributions have the exact
properties

ni�r,t� 
 	 dvf i
�0�
„v;�y
�r,t��…, i = 1, . . . ,s , �5.6�

d

2
n�r,t�T�r,t� 
 �

i=1

s 	 dv
1

2
miV

2f i
�0�
„v;�y
�r,t��… ,

�5.7�

��r,t�U�r,t� 
 �
i=1

s 	 dvmivf i
�0�
„v;�y
�r,t��… , �5.8�

and the corresponding moments of all higher order terms in
Eq. �5.5� must vanish. Generalization of this type of gradient
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expansion for the normal solution to include a class of non-
linear gradients in the reference state has been discussed re-
cently �65,66�.

As is standard for molecular gases, the gradient expansion
will be taken with respect to the reference local HCS, i.e.,
that resulting from the neglect of all gradients in the func-
tional but evaluated at the value of the fields at the chosen
point and time �y
�r1 , t��. This point is crucial in our analysis
since most of the previous results have taken elastic Maxwell
distributions as the base state. Note that in the CE method
the form of f i

�0� comes from the solution to the kinetic equa-
tion to zeroth order in gradients and cannot be chosen a
priori. Accordingly, f i

�0�(v1 ; �y
�r1 , t��)→ f i
�0�(V1 ; �y
�r1 , t��),

where V= �v−U�r , t�� is homogeneous and isotropic with re-
spect to its velocity dependence. This symmetry implies that
the leading �zero� order contributions to Eqs. �4.16� and
�4.17� for the vector fluxes �j0i�r , t�� and q�r , t� must vanish,
and this contribution to the pressure tensor P�
 must be iso-
tropic �proportional to ��
�. Similar symmetry considerations
to the first order contribution �linear in the gradients� deter-
mines the exact structure of the constitutive equation to this
order. Based on these symmetry considerations, the constitu-
tive quantities are known to take the forms

��r,t� → ��0�
„�y
�r,t��… + �U„�y
�r,t��…� · U�r,t� ,

�5.9�

j0i�r,t� → − �
j=1

s

mimj
nj�r,t�
��r,t�

Dij„�y
�r,t��…� ln nj�r,t�

− ��r,t�Di
T
„�y
�r,t��…� ln T�r,t�

− �
j=1

s

Dij
F
„�y
�r,t��…F j�r� , �5.10�

q�r,t� → − �„�y
�r,t��…�T�r,t�

− �
i,j=1

s

�T2�r,t�Dq,ij„�y
�r,t��…� ln nj�r,t�

+ Lij„�y
�r,t��…F j�r�� , �5.11�

P���r,t� = p„�y
�r,t��…��� − �„�y
�r,t��…
�r�
U��r,t�

+ �r�
U��r,t� −

2

d
� · U�r,t��

− �„�y
�r,t��…� · U�r,t� . �5.12�

The unknown quantities in these constitutive equations
�5.9�–�5.12� include the cooling rate ��0�(�y
�r , t��), the hy-
drostatic granular pressure p(�y
�r , t��), and the transport
coefficients �U, Dij, Di

T, Dij
F, Dq,ij, Lij, �, and �. These quan-

tities can be expressed as explicit functions of the hydrody-
namic variables once f i

�0� and f i
�1� are known. The equations

governing the solution of f i
�0� and f i

�1� are found using the CE
method, as described below.

VI. CHAPMAN-ENSKOG NORMAL SOLUTION

The CE method is a procedure for constructing an ap-
proximate normal solution. It is perturbative, using the spa-
tial gradients as the small expansion parameter. More pre-
cisely, the small parameter is Knudsen number �Kn�, defined
as the gradient of the hydrodynamic fields relative to their
local value times the mean free path. This means that the
conditions for the solution are restricted to small variations
of the hydrodynamic fields over distances of the order of the
mean free path. In the presence of an external force it is
necessary to characterize the magnitude of this force relative
to the gradients as well. Here, it is assumed that the magni-
tude of the force is first order in perturbation expansion. This
allows comparison with the results of Ref. �49� for the elastic
case.

The perturbation is carried out by considering the Enskog
kinetic equations successively at each order in the gradients.
As described below, the zeroth order equation is first ob-
tained for f i

�0�. Next, the first order equation for f i
�1� is ob-

tained. This expansion leads to integral-differential equations
for the determination of f i

�0� and f i
�1�, which are solved ex-

plicitly in the follow-up paper �50�.
As detailed in Appendix C, to zeroth order in the gradi-

ents, the kinetic equation �3.8� becomes

��tT��Tf i
�0�
„v1;�y
�r1,t��… = �

j=1

s

Jij
�0��v1�f �0��t�� , �6.1�

where

Jij
�0��v1�f �0��t�� 
 
ij

�0�
„�ij;�ni�r1,t��…�ij

d−1

�	 dv2	 d�̂���̂ · g12���̂ · g12�

���ij
−2f i

�0�
„V1�;�y
�r1,t��…f j

�0�
„V2�;�y
�r1,t��…

− f i
�0�
„V1;�y
�r1,t��…f j

�0�
„V2;�y
�r1,t��…� .

�6.2�

All spatial gradients are neglected at this lowest order. Equa-
tion �6.1� determines the velocity dependence of
f i

�0�(V1 ; �y
�r1 , t��); the space and time dependence is local
and entirely through the fields �y
�r1 , t�� at the space and
time point of interest. This has been exploited by writing the
time dependence of f i

�0� in terms of the time dependence of
the fields, and recognizing that all time derivatives of the
latter are proportional to space gradients, except the tempera-
ture, through the balance equations

�tni = 0, �tT = − ��0�T, �tU = 0 . �6.3�

Here, ��0� is the cooling rate �4.27� to zeroth order in the
gradients
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��0� =
1

2dnT
�
i,j=1

s

�1 − �ij
2 �mi	 ji
ij

�0�
„�ij;�ni�r1,t��…�ij

d−1

�	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12�3

�f i
�0�
„V1;�y
�r1,t��…f j

�0�
„V2;�y
�r1,t��… . �6.4�

Similarly, the functional dependence of 
ij
�0��r1 ,r2 � �ni�� on

the compositions to zeroth order in the gradients has the
functional dependence on the densities replaced by �ni�
→ �ni�r1 , t�� at the point of interest. The result is translational
and rotational invariant 
ij

�0��r1 ,r2 � �ni��→
ij
�0���r1

−r2� ; �ni(r1 , t��), a function of the densities. Finally, gradients
in the distribution functions of the collision operators
must be neglected, e.g., f i

�0�(v1 ; �y
�r1+�ij , t��)
→ f i

�0�(v1 ; �y
�r1 , t��).
A further simplification of these equations for the lowest

order distribution functions occurs when they are written in
terms of the corresponding dimensionless forms ��i�

f i
�0��V;�y
�� = niv0

−d�T��i�V*;�ni
*�� , �6.5�

with the definitions

V* =
V

v0�T�
, v0�T� =�2T

m
, ni

* = ni�i
d, m =

1

s
�
i=1

s

mi.

�6.6�

The solution depends on the flow field only through the rela-
tive velocity V. Furthermore, since there is no external en-
ergy scale the temperature can occur only through the scaling
of the dimensionless velocity through the thermal velocity
v0�T�. Equation �6.1� now takes the dimensionless form

−
1

2
�*�V* · �V*�i� = �

j

Jij
�0�*�V*��i� , �6.7�

where �V* 
� /�V* and

�* =
�

v0
��0�, Jij

�0�* =
�

n
v0

d−1Jij
�0�, � =

1

n�d−1 ,

n = �
i=1

s

ni, � =
1

s
�
i=1

s

�i. �6.8�

The solution to this equation is a universal function of the
magnitude of the velocity V* and is otherwise independent of
the temperature and flow field. For a one component fluid it
is independent of the density as well. However, for mixtures
it is parametrized by the dimensionless species densities
through the factors 
ij

�0���ij ; �ni
*��. Equation �6.1� has the

same form as the corresponding dimensionless Enskog equa-
tions for a strictly homogeneous state. The latter is called the
HCS. Here, however, the state is not homogeneous because
of the requirements �5.6�–�5.8�. Instead it is a local HCS. As
said before, an important point to recognize is that the oc-
currence of this local HCS as the reference state is not an
assumption of the CE expansion but rather a consequence of

the kinetic equations to lowest order in the gradient expan-
sion.

The analysis to first order in the gradients is similar and
the details are given in Appendix C. The result has the form
�5.5�

f i
�1� → Ai�V� · � ln T + �

j=1

s

Bi
j�V� · � ln nj

+ Ci,���V�
1

2

��U� + ��U� −

2

d
���� · U�

+ Di�V�� · U + �
j=1

s

Ei
j�V� · F j . �6.9�

The contributions from the flow field gradients have been
separated into independent traceless and diagonal compo-
nents, as follows from fluid symmetry. The velocity depen-
dence of the gradient contributions is contained in the func-
tions Ai�V� , Bi

j�V� , Ci,���V� , Di�V�, and Ei
j�V�. The

kinetic equations determine these functions as the solutions
to the integral equations

�
L −
1

2
��0��A�

i
= Ai, �6.10�

�LB j�i − nj
���0�

�nj
Ai = Bi

j , �6.11�

�
L +
1

2
��0��C���

i
= Ci,��, �6.12�

�
L +
1

2
��0��D�

i
= Di, �6.13�

„�L + ��0��E j
…i = Ei

j . �6.14�

The linear operator L is given by

�LX�i =
1

2
��0��V · �VXi� + �LX�i, �6.15�

�LX�i = − �
j=1

s

�Jij
�0��v1�Xi, f j

�0�� + Jij
�0��v1�f i

�0�,Xj�� , �6.16�

and the inhomogeneous terms are defined by

Ai,��V� =
1

2
V��V · �Vf i

�0�� −
p

�
�V�

f i
�0�

+
1

2�
j=1

s

Kij,���V · �Vf j
�0��� , �6.17�

Bi,�
j �V� = − V�nj�nj

f i
�0� − �−1��V�

f i
�0��nj��nj

p�

− �
�=1

s

Ki�,���nj�nj
+

1

2

n�

� ln 
i�
�0�

�nj
+ Ii�j�� f�

�0�� ,

�6.18�
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Ci,�
�V� =
1

2

V��V


f i
�0� + V
�V�

f i
�0� −

2

d
�
�V · �Vf i

�0��
+

1

2�
j=1

s 
Kij,���V

f j

�0�� + Kij,
��V�
f j

�0��

−
2

d
�
�Kij,���V�

f j
�0��� , �6.19�

Di�V� =
1

d
V · �Vf i

�0� −
1

2

�U +

2

nTd
p��V · �Vf i

�0��

+ �
j=1

s 
nj�nj
f i

�0� +
1

d
Kij,���V�

f j
�0��� , �6.20�

Ei
j�V� = − ��Vf i

�0��
1

mj

�ij −

njmj

�
� , �6.21�

where the operator Kij,��X� is defined by Eq. �C16�.
This completes the construction of the normal solution to

the revised Enskog equations up through first order in the
gradients. Equation �6.7� determines the f i

�0� through the defi-
nition �6.5�; the solution to the linear integral equations
�6.10�–�6.14� determines the f i

�1� through the definition �6.9�.
The unknown fluxes and cooling rate of the hydrodynamic
equations can then be calculated with these solutions. This is
made explicit in the next section.

VII. CONSTITUTIVE EQUATIONS AND TRANSPORT
COEFFICIENTS

The forms for the constitutive equations to first order in
the gradients are given by Eqs. �5.9�–�5.12�. The explicit
representations for the coefficients in these equations are
given in terms of the solutions to the integral equations for
f i

�0� and f i
�1� of the previous section. Details of the simplifi-

cation of these expressions in terms of f i
�0� and f i

�1� are given
in Appendix F and only the final results are presented here.

Recall that the results below are based on the assumption
that the external force is of the same magnitude as f i

�1�; a
force of different magnitude would result in different consti-
tutive relations.

A. Cooling rate

The cooling rate is calculated from Eq. �4.27�, resulting in
the form �5.9�

� → ��0� + �U� · U , �7.1�

with

��0� =
B3

2dnT
�
i,j=1

s

�1 − �ij
2 �

mimj

mi + mj

ij

�0��ij
d−1

�	 dv1	 dv2f i
�0��V1�f j

�0��V2�g12
3 , �7.2�

and

�U = −
d + 2

dnT
B4 �

i,j=1

s

�1 − �ij
2 �	 ji
ij

�0��ij
d ninjTi

�0�

+
B3

dnT
�
i,j=1

s

�1 − �ij
2 �

mimj

mi + mj

ij

�0��ij
d−1

�	 dv1	 dv2g12
3 f i

�0��V1�D j�V2� . �7.3�

The constant Bn is defined by

Bn 
 ��d−1�/2
�
n + 1

2
�

�
n + d

2
� . �7.4�

Also in Eq. �7.3� the species temperatures �Ti
�0�� have been

defined by

d

2
niTi

�0� =	 dv
1

2
miV

2f i
�0���ni�,T,V� . �7.5�

There is no special significance to these quantities other than
naming the integral on the right side, which is a specified
function of the hydrodynamic fields �ni� and the global tem-
perature T through f i

�0�.

B. Mass fluxes

The mass fluxes are determined from the definition of Eq.
�4.16� leading to the form �5.10� to first order in the gradients

j0i → − �
j=1

s

mimj
nj

�
Dij� ln nj − �Di

T� ln T − �
j=1

s

Dij
FF j .

�7.6�

The transport coefficients are identified as

Di
T = −

mi

�d
	 dvV · Ai�V� , �7.7�

Dij = −
�

mjnjd
	 dvV · Bi

j�V� , �7.8�

Dij
F = −

mi

d
	 dvV · Ei

j�V� . �7.9�

C. Energy flux

The energy flux to first order in the gradients is given by
Eq. �5.11�,

q → − ��T − �
i,j=1

s

�T2Dq,ij� ln nj + LijF j� . �7.10�

There are both kinetic and collisional transfer contributions
according to Eq. �4.17�, q
qk+qc. The kinetic contributions
to the transport coefficients are identified as

GARZÓ, DUFTY, AND HRENYA PHYSICAL REVIEW E 76, 031303 �2007�

031303-10



�k = �
i=1

s

�i
k = −

1

dT
�
i=1

s 	 dv
1

2
miV

2V · Ai�V� , �7.11�

Dq,ij
k = −

1

dT2 	 dv
1

2
miV

2V · Bi
j�V� , �7.12�

Lij
k = −

1

d
	 dv

1

2
miV

2V · Ei
j�V� . �7.13�

For convenience below, the partial thermal conductivities �i
k

have been introduced in Eq. �7.11�. The collision transfer
contributions are obtained from Eq. �4.19� to first order in
the gradients. These are calculated in Appendix F with the
results

�c = �
i,j=1

s
1

8
�1 + �ij�mj	ij�ij

d 
ij
�0��2B4�1 − �ij��	ij

− 	 ji�ni� 2

mj
� j

k + �d + 2�
Ti

�0�

mimjT
�Dj

T� +
8B2

2 + d
ni�2	ij

mj
� j

k

− �d + 2�
Ti

�0�

mimjT
�2	ij − 	 ji��Dj

T� − T−1Cij
T� , �7.14�

Dq,ij
c = �

p=1

s
1

8
�1 + �ip�mp	ip�ip

d 
ip
�0��2B4�1 − �ip��	ip − 	pi�

� ni� 2

mp
Dq,pj

k + �d + 2�
Ti

�0�

T2

mjnj

�mi
Dpj�

+
8B2

d + 2
ni�2	pi

mp
Dq,pj

k − �d + 2��2	ip

− 	pi�
Ti

�0�

T2

njmj

mi�
Dpj� − T−2Cipj

T � , �7.15�

Lij
c = �

p=1

s
1

8
�1 + �ip�mp	ip�ip

d 
ip
�0��2B4�1 − �ip��	ip − 	pi�

� ni� 2

mp
Lpj

k + �d + 2�
Ti

�0�

mimp
Dpj

F � +
8B2

d + 2
ni�2	pi

mp
Lpj

k

− �d + 2��2	ip − 	pi�
Ti

�0�

mimp
Dpj

F �� , �7.16�

where the coefficients Cij
T and Cipj

T are given by Eqs. �F27�
and �F28�. These expressions also depend on the transport
coefficients of the mass fluxes Di

T, Dij, and Dij
F given by Eqs.

�7.7�–�7.9�, respectively, and on the kinetic contributions �i
k,

Dq,ij
k , and Lij

k .

D. Momentum flux

The pressure tensor is evaluated from Eqs. �4.20�–�4.22�.
To zeroth order in the gradients, one gets the pressure p as

p��ni�,T� =
1

d
P��

�0� 
 pk��ni�,T� + pc��ni�,T� =
1

d
P��

�0�k +
1

d
P��

�0�c,

�7.17�

where

p = pk + pc, �7.18�

pk = nT, pc = B2 �
i,j=1

s

	 ji�1 + �ij��ij
d 
ij

�0�ninjTi
�0�.

�7.19�

Similarly the shear viscosity is �=�k+�c where

�k = �
i=1

s

�i
k, �i

k = −
1

�d + 2��d − 1��i=1

s 	 dvmiV�V�Ci,���V� ,

�7.20�

�c =
2B2

�d + 2� �
i,j=1

s

	ij�1 + �ij�
ij
�0�ni�ij

d � j
k +

d

d + 2
�c.

�7.21�

Finally, the bulk viscosity is �=�k+�c where

�k = 0,

�c =
B3�d + 1�

2d2 �
i,j=1

s

mj	ij�1 + �ij�
ij
�0��ij

d+1

�	 dv1	 dv2f i
�0��V1�f j

�0��V2�g12. �7.22�

VIII. DISCUSSION

The most complete and accurate description of mixtures
for ordinary fluids is based on the revised Enskog kinetic
equations for hard spheres. The explicit construction of so-
lutions to those equations by the CE expansion to first order
in the gradients was given more than 20 years ago in Ref.
�49�. These solutions, together with the macroscopic balance
equations obtained from the kinetic equations, provide a self-
consistent derivation of Navier-Stokes hydrodynamics for
mixtures and the identification of expressions for all the
Navier-Stokes parameters �equations of state, transport coef-
ficients�. In the context of the chosen kinetic theory, the
analysis and the expressions for these parameters are exact.
At this formal level questions of principle could be ad-
dressed, prior to the introduction of subsequent approxima-
tions for practical evaluations. For example, it was shown
that application of the analysis to the original and revised
Enskog theories leads to qualitatively different Navier-
Stokes hydrodynamics, only one of which is consistent with
irreversible thermodynamics. Since no approximations were
involved this was sufficient to reject the Enskog kinetic
theory in favor of its revised version �48�.

The present work is simply an extension of that in Ref.
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�49� to inelastic hard sphere granular mixtures. Modification
of the collisions to account for inelasticity leads to significant
differences from ordinary fluids in detail, but the formal
structure of the CE expansion remains the same. Similarly,
granular Navier-Stokes hydrodynamics results exactly from
the CE solution to first order in the gradients and the corre-
sponding modified balance equations. The form of these hy-
drodynamic equations and expressions for the transport co-
efficients are exact, as in the ordinary fluid case. The primary
motivation for this analysis is to provide the basis for prac-
tical applications, as noted in the Introduction, and described
in the following paper. However, at the formal level, impor-
tant fundamental questions can be addressed and clarified as
well.

The existence of hydrodynamics for granular fluids has
been questioned, due to the many known differences from
ordinary fluids: there is no equilibrium or even stationary
reference state; the temperature is not a hydrodynamic field
�failure of energy conservation�, or conversely, multiple tem-
perature fields could be required for mixtures �failure of
equilibrium state equipartition for the corresponding granular
HCS�. In the end, qualitative discussions must be resolved by
controlled analysis. Here, the validity of the RET for some
range of densities and degree of dissipation has been as-
sumed as a mesoscopic basis for possible macroscopic dy-
namics in a granular mixture. As shown in the text, sufficient
conditions are the macroscopic balance equations �verified�
and a normal solution to the kinetic equations. The normal
solution is defined in terms of a chosen set of hydrodynamic
fields, and the question of hydrodynamics reduces to its ex-
istence. The details of the Appendixes give the explicit con-
struction of this solution to first order in the gradients, to-
gether with a proof of the existence of solutions to the
associated integral equations. It can be concluded from this
that a closed set of hydrodynamic equations for the species
densities, flow velocity, and a single temperature exist for
sufficiently small gradients.

This conclusion is consistent with the observations that
the reference state is not equilibrium, depends on the cooling
temperature, energy loss can be large at strong dissipation,
and the kinetic temperatures of species are different. None of
these facts compromises implementation of the CE expan-
sion for solution to the kinetic equation. The parameters of
the resulting Navier-Stokes equations incorporate such ef-
fects through the integral equations that determine them, and
their dependence on the time dependent fields. This in turn
affects the solutions to the Navier-Stokes equations under
different physical conditions, and is responsible for some of
the observed peculiarities of granular fluids. Clearly, it is
important to get the details of the Navier-Stokes equations
accurately before concluding that any observed experimental
phenomenon is hydrodynamic or not. This is another primary
motivation for the present work.

These details entail solution to the equation for the refer-
ence state and solution to the integral equations for the trans-
port coefficients, to determine them as functions of the hy-
drodynamic fields �temperature, flow field, and species
densities� and the system parameters �restitution coefficients,
masses, particle sizes�. There has been considerable study of
the reference state, as an expansion about a Gaussian for

relatively small velocities �asymptotic forms for large veloci-
ties are known as well�. The integral equations can be solved
approximately as truncated expansions in a complete set of
polynomials with Gaussian weight factors. For ordinary flu-
ids the leading approximation is generally quite accurate, and
the following paper gives its extension to the granular mix-
ture. Still, there are open questions about this approximation
for strong dissipation and large mechanical disparity �e.g.,
mass ratio�. Previous results obtained for granular mixtures
at low-density �67,68� and for the shear viscosity of a heated
granular mixture at moderate density �64� have shown the
accuracy of the above approximation, even for strong dissi-
pation.

An accurate solution to the integral equations will predict
the transport coefficients as functions of the dissipation.
There is only one correct result for this dependence, given by
the formulas obtained here. However, its measurement in a
given experiment or simulation can entangle and affect this
dependence of the transport coefficients due to higher order
gradients beyond the Navier-Stokes limit. It may be tempting
to compare experimental or simulation data to a correspond-
ing Navier-Stokes solution, adjusting the transport coeffi-
cients for a best fit and reporting these as the “measured”
values. This can be misleading for granular fluids under con-
ditions where the size of the gradients increases with the
degree of dissipation. For such states, strong dissipation can
require additional terms in the constitutive equations beyond
those of Navier-Stokes order �40,69,70�. This does not mean
that the results obtained here are not correct at strong dissi-
pation, only that they must be distinguished carefully from
other effects of the same order. A careful tabulation of the
Navier-Stokes results given here �e.g., via Monte Carlo
simulation� is required for an accurate analysis of experi-
ments of current interest. It is an interesting feature of granu-
lar fluids that hydrodynamic states beyond Navier-Stokes or-
der may be the norm rather than the exception.
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APPENDIX A: RET AND SPATIAL CORRELATIONS
AT CONTACT

In the case of ordinary fluids, the Enskog approximation
can be understood as a short time, or Markovian approxima-
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tion. This follows if the initial distribution has the Enskog
form

f ij�r1,v1,r1 − �ij,v2;t = 0� = f i�r1,v1,t = 0�

�f j�r1 − �ij,v2;t = 0�

�
ij�r1,r1 − �ij��nk�� .

�A1�

In fact, this is a quite plausible class of initial conditions
since correlations in that case are generally induced by the
interparticle structure that is independent of the velocities.
Then at finite times, it is assumed that f ij�r1 ,v1 ,r1

−�ij ,v2 ; t� becomes a functional of f i,

f ij�r1,v1,r1 − �ij,v2;t� = Fij„r1,v1,r1 − �ij,v2;t�f i�t�… .

�A2�

The Enskog approximation corresponds to evaluating this
functional at t=0

f ij�r1,v1,r1 − �ij,v2;t� → Fij„r1,v1,r1 − �ij,v2;t = 0�f i�t�… .

�A3�

Thus for the special class of initial conditions the Enskog
approximation is asymptotically exact at short times, and as-
sumes that the generator for dynamics at later times is the
same as that initially. This idea provides a simple mean field
theory for particles with continuous potentials of interaction,
but is more realistic for hard spheres where there is instan-

taneous momentum transport at the initial time. The presence
of inherent velocity correlations for granular fluids suggests
that the form �A1� is less justified than in the ordinary fluid
case. However, it is noted that velocity correlations are
present for any nonequilibrium state even with elastic colli-
sions and it is known that the Enskog equation still provides
a good approximation in these latter cases.

An important exact boundary condition for hard spheres is
given by �53�

���̂ · g12�f ij�r1,v1,r1 − �ij,v2;t�

= �ij
−2bij

−1��− �̂ · g12�f ij�r1,v1,r1 − �ij,v2;t� .

�A4�

This equation implies that the distribution of particles that
have collided is the same as those about to collide, but with
their velocities changed according to the collision rules. In
general the two particle distribution function can be written
as

f ij�r1,v1,r1 − �ij,v2;t� = ��− �̂ · g12�f ij�r1,v1,r1 − �ij,v2;t�

+ ���̂ · g12�f ij�r1,v1,r1 − �ij,v2;t� .

�A5�

If the Enskog approximation �A3� is introduced in the first
term on the right side of Eq. �A5�, then the corresponding
approximation on the right side of Eq. �A5� gives the ap-
proximate two particle distribution function at contact as

f ij�r1,v1,r1 − �ij,v2;t� → ��− �̂ · g12�
ij�r1,r1 − �ij��nk��f i�r1,v1;t�f j�r1 − �ij,v2;t� + �ij
−2bij

−1��− �̂ · g12�

�
ij�r1,r1 − �ij��nk��f i�r1,v1;t�f j�r1 − �ij,v2;t�

= ��− �̂ · g12�
ij�r1,r1 − �ij��nk��f i�r1,v1;t�f j�r1 − �ij,v2;t� + �ij
−2���̂ · g12�
ij�r1,r1 − �ij��nk��

�f i�r1,v1�;t�f j�r1 − �ij,v2�;t� . �A6�

Since v1� and v2� are functions of both v1 and v2 there are
velocity correlations on the complementary hemisphere,
even when they are neglected on the precollision hemi-
sphere.

An important consequence of Eq. �A6� is the relationship
of 
ij�r1 ,r1−�ij � �ni�� to the pair correlation function
gij�r1 ,r1−�ij � �nk�� defined by

ni�r1�nj�r1 − �ij�gij�r1,r1 − �ij��nk��

=	 dv1	 dv2f ij�r1,v1,r1 − �ij,v2;t� . �A7�

Use of the approximation �A6� gives the result

ni�r1�nj�r1 − �ij�gij�r1,r1 − �ij��nk��

=
1 + �ij

�ij

ij�r1,r1 − �ij��nk�� 	 dv1	 dv2��− �̂ · g12�

�f i�r1,v1;t�f j�r1 − �ij,v2;t� , �A8�

where a change of variables has been made in the integration
of the second term in Eq. �A6�,

	 dv1	 dv2X�v1�,v2�� = �ij	 dv1�	 dv2�X�v1�,v2�� .

�A9�

For a uniform system, gij�r1 ,r2 � �nk��→gij��r1−r2� ; �nk�� and
this expression reduces to
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gij��ij;�nk�� =
1 + �ij

2�ij

ij��ij;�nk�� . �A10�

Equation �A10� is the result quoted in the text and provides
the interpretation for 
ij�r1 ,r1−�ij � �nk��. For elastic colli-
sions 
ij��ij ; �nk�� is indeed the pair correlation function at
contact. The Enskog theory in that case takes 
ij�r1 ,r1

−�ij � �nk�� to be the pair correlation function for an equilib-
rium nonuniform fluid whose densities are equal to those for
the actual nonequilibrium state being considered. This as-
sumption is based on the fact that structural correlations for
hard spheres are entirely due to excluded volume effects
which should be similar for equilibrium and nonequilibrium
states. It is reasonable to extend this choice for 
ij�r1 ,r1

−�ij � �nk�� to granular fluids as well. Its accuracy can be
judged by measuring �via MD simulation� the pair correla-
tion given by Eq. �A10� with this choice on the right side.
This has been done for the one component fluid, indicating
reasonable results over a range of values for the restitution
coefficient �53�.

APPENDIX B: BALANCE EQUATIONS AND FLUXES

The macroscopic balance equations follow from the defi-
nitions �4.1�–�4.3� and the first hierarchy equation �3.1�,

�tni + �r1
·	 dv1v1f i =	 dv1Ci, �B1�

�te + �r1
· �

i=1

s 	 dv1
1

2
miv1

2v1f i − �
i=1

s

Fi ·	 dv1v1f i

= �
i=1

s 	 dv1
1

2
miv1

2Ci, �B2�

�tp
 + �r1��
i=1

s 	 dv1miv1�v1
f i − �
i=1

s

niFi


= �
i=1

s 	 dv1miv1
Ci. �B3�

The integrals over the collisional contribution Ci are ana-
lyzed below with the results

	 dv1Ci = 0, �B4�

�
i=1

s 	 dv1
1

2
miv1

2Ci = − � · sc − w , �B5�

�
i=1

s 	 dv1miv1
Ci = − �r�
t�

c . �B6�

Use of these expressions in Eqs. �B1�–�B3� gives the balance
equations �4.4�–�4.6� of the text with

ji = mi	 dv1v1f i, �B7�

s = �
i=1

s 	 dv1
1

2
miv1

2v1f i + sc, �B8�

t�
 = �
i=1

s 	 dv1miv1�v1
f i + t�

c . �B9�

The terms w, sc, and t�

c arising from the collisional con-

tribution Ci are identified by further analysis of the left sides
of Eqs. �B5� and �B6�. To do so consider the general expres-
sion for some arbitrary function �i�v1�

	 dv1�iCi = �
j=1

s

�ij
d−1	 dv1	 dv2	 d�̂���̂ · g12�

���̂ · g12��i�v1���ij
−2f ij�r1,v1�,r1 − �ij,v2�;t�

− f ij�r1,v1,r1 + �ij,v2;t�� . �B10�

The restituting velocities are functions of the given veloci-
ties, v1�=v1��v1 ,v2� ,v2�=v2��v1 ,v2�, defined by Eq. �3.3�.
These relations can be inverted to get

v1 = v1� − 	 ji�1 + �ij���̂ · g12� ��̂ ,

v2 = v2� + 	ij�1 + �ij���̂ · g12� ��̂ . �B11�

Therefore in the first term of Eq. �B10� it is possible to
change integration variables from dv1dv2 to dv1�dv2�, with a
Jacobian �ij to get

	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12��i�v1��ij
−2f ij�r1,v1�,r1 − �ij,v2�;t�

=	 dv1�	 dv2�	 d�̂��− �̂ · g12� ��− �̂ · g12� ��i„v1�v1�,v2��…f ij�r1,v1�,r1 − �ij,v2�;t�

=	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12��i„v1��v1,v2�…f ij�r1,v1,r1 + �ij,v2;t� , �B12�
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where use has been made of ��̂ ·g12�=−�ij��̂ ·g12� �. In the last line the dummy variables �v1� ,v2�� have been relabeled �v1 ,v2�,
and a change of integration from �̂ to −�̂ has been performed. Accordingly v1�v1� ,v2�� has been relabeled v1��v1 ,v2� with Eq.
�B11� becoming in this notation

v1� = v1 − 	 ji�1 + �ij���̂ · g12��̂ , v2� = v2 + 	ij�1 + �ij���̂ · g12��̂ . �B13�

This is the direct scattering law, which differs from the restituting scattering law �3.3� for �ij�1. With this transformation the
integral �B10� is

	 dv1�iCi = �
j=1

s

�ij
d−1	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12���i�v1�� − �i�v1��f ij�r1,v1,r1 + �ij,v2;t� . �B14�

The special choice �i�v1�=1 proves Eq. �B4� above.
Next, consider the sum of Eq. �B14� over all species,

�
i=1

s 	 dv1�iCi = �
i,j=1

s

�ij
d−1	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12���i�v1�� − �i�v1��f ij�r1,v1,r1 + �ij,v2;t�

=
1

2 �
i,j=1

k

�ij
d−1	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12����i�v1�� − �i�v1��f ij�r1,v1,r1 + �ij,v2;t�

+ �� j�v2�� − � j�v2��f ji�r1,v2,r1 − �ij,v1;t�� . �B15�

The second equality is obtained from the first by taking half the sum of the first plus an equivalent form obtained by
interchanging v1 and v2, interchanging i and j, and changing �̂ to −�̂. To simplify this further, note the relation
f ji�r1 ,v2 ,r1−�ij ,v1 ; t�= f ij�r1−�ij ,v1 ,r1 ,v2 ; t� and arrange terms as

�
i=1

s 	 dv1�iCi =
1

2 �
i,j=1

s

�ij
d−1	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12����i�v1�� + � j�v2�� − �i�v1� − � j�v2��f ij�r1,v1,r1 + �ij,v2;t�

+ ��i�v1�� − �i�v1���f ij�r1,v1,r1 + �ij,v2;t� − f ij�r1 − �ij,v1,r1,v2;t��� . �B16�

The first term of the integrand represents a collisional effect due to scattering with a change in the velocities. The second term
is a collisional effect due to the spatial difference of the colliding pair. This second effect is called “collisional transfer.” It can
be written as a divergence through the identity

f ij�r1,v1,r1 + �ij,v2;t� − f ij�r1 − �ij,v1,r1,v2;t� = 	
0

1

dx
�

�x
fij„r1 − x�ij,v1,r1 + �1 − x��ij,v2;t…

= �r1
· �ij	

0

1

dxfij„r1 − x�ij,v1,r1 + �1 − x��ij,v2;t… . �B17�

Using the identity �B17�, Eq. �B16� can be finally written as

�
i=1

s 	 dv1�iCi =
1

2 �
i,j=1

s

�ij
d−1	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12����i�v1�� + � j�v2�� − �i�v1� − � j�v2��f ij�r1,v1,r1 + �ij,v2;t�

+ �r1
· �ij��i�v1�� − �i�v1��	

0

1

dxfij„r1 − x�ij,v1,r1 + �1 − x��ij,v2;t…� . �B18�

Now, apply this result to the case �i=miv1. Since the total momentum is conserved in all pair collisions, �i�v1��+� j�v2��
−�i�v1�−� j�v2�=0 for this case and Eq. �B18� gives Eq. �B6� with

t�

c 
 −

1

2 �
i,j=1

s

�ij
d 	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12��̂��miv1
� − miv1
�	

0

1

dxfij„r1 − x�ij,v1,r1 + �1 − x��ij,v2;t…

=
1

2 �
i,j=1

s

mi	 ji�1 + �ij��ij
d 	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12�2�̂��̂
	

0

1

dxfij„r1 − x�ij,v1,r1 + �1 − x��ij,v2;t… .

�B19�

The analysis leading to Eq. �B6� follows from Eq. �B16� in a similar way with �i=miv1
2 /2. However, since energy is not
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conserved in pair collisions the first term on the right side does not vanish. Instead, it represents the collisions energy loss w,

w = − �
i,j=1

s
1

4
�ij

d−1	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12��miv1�
2 + mjv2�

2 − miv1
2 − mjv2

2�f ij�r1,v1,r1 + �ij,v2;t�

=
1

4 �
i,j=1

s

�1 − �ij
2 �mi	 ji�ij

d−1	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12�3f ij�r1,v1,r1 + �ij,v2;t� . �B20�

The second term on the right side of Eq. �B18� gives the collisional transfer contribution to the flux

� · sc = − �r1
· �

i,j=1

s
1

4
mi�ij

d 	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12��̂�v1�
2 − v1

2�	
0

1

dxfij„r1 − x�ij,v1,r1 + �1 − x��ij,v2;t…

= �r1
· �

i,j=1

s
1

4
�1 + �ij�mi	 ji�ij

d 	 dv1	 dv2	 d�̂���̂ · g12���̂ · g12�2�̂�	 ji�1 − �ij���̂ · g12�

+ 2�̂ · �	ijv1 + 	 jiv2��	
0

1

dxfij�r1 − x�ij,v1,r1 + �1 − x��ij,v2;t� . �B21�

This confirms Eq. �B5� and identifies sc, which has the
equivalent form �obtained by taking half the sum of forms
with i and j interchanged�

sc = �
i,j=1

s
1

8
�1 + �ij�mi	 ji�ij

d 	 dv1	 dv2	 d�̂���̂ · g12�

���̂ · g12�2�̂��1 − �ij��	 ji − 	ij���̂ · g12� + 4�̂ · �	ijv1

+ 	 jiv2��	
0

1

dxfij„r1 − x�ij,v1,r1 + �1 − x��ij,v2;t… .

�B22�

APPENDIX C: CHAPMAN-ENSKOG SOLUTION

As described in the text a normal solution to the kinetic
equation is a nonlocal functional of the hydrodynamic fields
f i(v1 � �y
�t��). This is equivalent to a function of the fields at
a point and all their derivatives at that point,

f i„r1,v1��y
�t��… = f i„v1;�y
�r1,t��;��r1
y
�r1,t�; . . . �… .

�C1�

If the gradients are small, this function can be expanded in
the appropriate dimensionless small parameter

f i„v1��y
�t��… = f i
�0�
„v1;�y
�r1,t��…

+ f i
�1�
„v1;�y
�r1,t��;��r1

y
�r1,t��… + ¯ ,

�C2�

where f i
�0� is a function of the fields alone, f i

�1� is a function of
the fields and linear in their gradients, and so on. Thus the
kinetic equation can be solved perturbatively by requiring
that contributions from common order in this gradient expan-
sion vanish.

To perform this ordering it is necessary to expand the
collision operators of Eq. �3.9�,

Jij�r1,v1�f�t�� 
 �ij
d−1	 dv2	 d�̂���̂ · g12���̂ · g12�

���ij
−2
ij�r1,r1 − �ij��ni��

�f i�r1,v1�;t�f j�r1 − �ij,v2�;t�

− 
ij�r1,r1 + �ij��ni��f i�r1,v1;t�

�f j�r1 + �ij,v2;t�� . �C3�

For the purposes here it is sufficient to go up through first
order. The distribution functions evaluated at r1±�ij become

f i„v1;�y
�r1 ± �ij,t��;��r1
y
�r1 ± �ij,t�; . . . �… → �1 ± �ij · �r1

�f i
�0�
„v1;�y
�r1,t��… + f i

�1�
„v1;�y
�r1,t��;��r1

y
�r1,t��…

= f i
�0�
„v1;�y
�r1,t��… ± ��y


f i
�0�
„v1;�y
�r1,t��…��ij · �r1

y
�r1,t�

+ f i
�1�
„v1;�y
�r1,t��;��r1

y
�r1,t��… . �C4�

The functional expansion of 
ij�r1 ,r1±�ij � �ni�� to this order is obtained by a functional expansion of all species densities about
their values at r1
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ij„r1,r1 ± �ij��ni�t��… = 
ij
�0�
„�ij��nk�r1,t��… + �

�=1

s 	 dr���
ij�r1,r1 ± �ij��ni��
�n��r�,t�

�
�n=0

„n��r�� − n��r1�… + ¯ �C5�

→
ij
�0�
„�ij;�nk�r1,t��… + �

�=1

s

„�r1
n��r1;t�…	 dr��r� − r1���
ij�r1,r1 ± �ij��ni��

�n��r�,t�
�

�n=0
. �C6�

The arrow denotes the leading terms of a Taylor series for
(n��r��−n��r1�). The integral can be simplified by noting at
�n=0 the functional integral has translational invariance

��
ij�r1,r1 ± �ij��ni��
�n��r�,t�

�
�n=0

= Fij��r1 − r�,r1 ± �ij − r��

�C7�

so

	 dr��r� − r1���
ij�r1,r1 ± �ij��ni��
�n��r�,t�

�
�n=0

=	 dr�
r� ±
1

2
�ij���
ij
�

1

2
�ij, ±

1

2
�ij��ni��

�n��r�,t�
�

�n=0

�C8�

= ±
1

2
�ij

� ln 
ij
�0�
„�ij;�n��r1��…

�n��r1�

+	 dr�r���
ij
�
1

2
�ij, ±

1

2
�ij��ni��

�n��r�,t�
�

�n=0
. �C9�

The expansion for 
ij(r1 ,r1±�ij � �ni�t��) becomes


ij„r1,r1 ± �ij��ni�t��… = 
ij
�0�
„�ij;�nk�r1,t��…

��1 ±
1

2
�ij�

�=1

s

�r1
ln n��r1;t�

� 
n��r1�
� ln 
ij

�0�
„�ij;�n��r1…�…

�n��r1�

+ Iij�„�ij;�nk�r1,t��…�� . �C10�

The last line defines Iij�(�ij ; �nk�r1 , t��) as

Iij���ij;�nk�� 

2n��r1,t�


ij
�0���ij;�nk���ij

	 dr���̂ij · r��

���
ij
−
1

2
�ij, +

1

2
�ij��ni��

�n��r�,t�
�

�n=0
.

�C11�

These results give the expansion of Jij�r1 ,v1 � f i� to first
order in the gradients

�
j=1

s

Jij�r1,v1�f� → �
j=1

s

Jij
�0��v1�f i

�0�, f j
�0�� − �Lf �1��i �C12�

− �
j=1

s

Kij,��v1��y

f j

�0��t����y
�r1,t�

�C13�

− �
j,�=1

s 
n�

� ln 
ij
�0���ij;�nk��
�n�

+ Iij���ij;�nk���
�Kij,��v1�f j

�0��t���� ln n��r1;t�

�C14�

with the definitions ��X
�X /�r�,

Jij
�0��v1�gi, f j� 
 
ij

�0�
„�ij;�ni�r1,t��…�ij

d−1	 dv2	 d�̂���̂ · g12�

���̂ · g12���ij
−2gi�V1��f j�V2�� − gi�V1�f j�V2�� ,

�C15�

Kij,��Xj� = �ij
d 
ij

�0� 	 dv2	 d�̂���̂ · g12���̂ · g12��̂�

���ij
−2f i

�0��r1,V1�;t�Xj�r1,V2��

+ f i
�0��r1,V1;t�Xj�r1,V2�� . �C16�

Finally, L is a linear operator defined over s dimensional
vectors �Xi� whose components are labeled by the species

�LX�i = − �
j=1

s

�Jij
�0��v1�Xi, f j

�0�� + Jij
�0��v1�f i

�0�,Xj�� . �C17�

It remains to choose the magnitude of the external forces
Fi to consistently order this expansion. To be specific, and
for comparison with Ref. �49� it is assumed here to be of first
order in the gradients.

1. Zeroth order

At lowest order all gradients of the hydrodynamic fields
are neglected, and Eq. �3.8� becomes
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�t
�0�f i

�0�
„v1;�y
�r1,t��… = �

j=1

s

Jij
�0��v1�f i

�0�
„�y
�r1,t��…,

f j
�0�
„�y
�r1,t��…� . �C18�

The notation �t
�0� for the time derivative means that the bal-

ance equations are to be used to zeroth order in the gradients

�t
�0�f i

�0�
„V1;�y
�r1,t��… = ��y


f i
�0�
„V1;�y
�r1,t��…��t

�0�y
�r1,t�

= − ��0�
„�y
�r1,t��…T�T

�f i
�0�
„V1;�y
�r1,t��… . �C19�

Use of Eq. �C19� in Eq. �C18� gives the zeroth order equa-
tion �6.1� of the text.

2. First order

The kinetic equation for contributions of first order in the
gradients is

�t
�0�f i

�1� + �Lf �1��i = − ��t
�1� + v1 · �r1

+ mi
−1Fi · �v1

�f i
�0�

− �
j=1

s

Kij,��v1��y

f j

�0����y


−
1

2 �
j,�=1

s

Kij,��v1�
n�

� ln 
ij
�0�

�n�

+ Iij�� f j
�0���� ln n�, �C20�

where �r
� /�r and �V
� /�V. The first term on the right
side of Eq. �C20� can be expressed explicitly in terms of the
gradients, where now �t

�1� means that the balance equations
are to be used with only terms of first order in the gradients

��t
�1� + v1 · �r1

+ mi
−1Fi · �V1

�f i
�0�

= mi
−1Fi · �V1

f i
�0� + ��y


f i
�0���Dt

�1� + V1 · �r1
�y


= 
mi
−1Fi − �−1�

j=1

s

njF j��V1
f i

�0�

− ��V1
f i

�0���− �−1�r1
p + V1 · �r1

U�

− ��Tf i
�0���
T�U +

2

nd
p�� · U − V1 · �r1

T�
+ �

j=1

s

��nj
f i

�0���− nj� · U + V1 · �r1
nj� . �C21�

In Eq. �C21�, Dt
�1�
�t

�1�+U ·� and use has been made of the
fact that f i

�0� depends on U only through the combination
V1=v1−U, so that

�Uf i
�0� = − �V1

f i
�0�. �C22�

The pressure gradient can be expressed in terms of the tem-
perature and density gradients

�r1
p =

p

T
�r1

T + �
j=1

s

��nj
p��r1

nj , �C23�

to give

��t
�1� + v1 · �r1

+ mi
−1Fi · �v1

�f i
�0�

= mi
−1Fi · �V1

f i
�0� − �−1�

j=1

s

nj�V1
f i

�0� · F j

+ 
 p

�T
�v1

f i
�0� + V1�Tf i

�0���r1
T

+ �
j=1

s

��−1�nj
p�v1

f i
�0� + V1�nj

f i
�0���r1

nj

− 

�U +
2

nTd
p�T�Tf i

�0� + �
j=1

s

nj�nj
f i

�0��� · U

− V1���V1�
f i

�0����U�. �C24�

Equations �C20� for the first order distributions, f i
�1�, now

become

�t
�0�f i

�1� + �Lf �1��i = Ai�V1;�ni��� ln T + �
j=1

s

Bi
j�V1;�ni��� ln nj

+ Ci,���V1;�ni��
1

2

��U� + ��U�

−
2

d
���� · U� + Di�V1;�ni��� · U

+ �
j=1

s

Ei
j�V1;�ni�� · F j . �C25�

The functions of velocity on the right side of Eq. �C25� are
identified as

Ai,��V� =
1

2
V��V · �Vf i

�0�� −
p

�
�V�

f i
�0�

+
1

2�
j=1

s

Kij,���V · �Vf j
�0��� , �C26�

Bi,�
j �V� = − V�nj�nj

f i
�0� − �−1��V�

f i
�0��nj��nj

p�

− �
�=1

s

Ki�,���nj�nj
+

1

2

n�

� ln 
i�
�0�

�nj
+ Ii�j�� f�

�0�� ,

�C27�

Ci,�
�V� =
1

2

V��V


f i
�0� + V
�V�

f i
�0� −

2

d
�
�V · �Vf i

�0��
+

1

2�
j=1

s 
Kij,���V

f j

�0�� + Kij,
��V�
f j

�0��

−
2

d
�
�Kij,���V�

f j
�0��� , �C28�
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Di�V� =
1

d
V · �Vf i

�0� −
1

2

�U +

2

nTd
p��V · �Vf i

�0��

+ �
j=1

s 
nj�nj
f i

�0� +
1

d
Kij,���V�

f j
�0��� , �C29�

Ei
j�V� = − ��Vf i

�0��
1

mj

�ij −

njmj

�
� . �C30�

Upon deriving Eqs. �C26�–�C30�, use has been made of the
relations

T�Tf i
�0� = −

1

2
�V · �Vf i

�0��, �U

f i

�0� = − �V

f i

�0�. �C31�

The tensor derivative of the flow field ��U� has been ex-
pressed in terms of its independent trace and traceless parts,
using the spherical symmetry of f i

�0�, e.g.,

�V��V�
f i

�0����U� = V̂�V̂��V�V�f i
�0����U��

= V̂�V̂��V�Vfi
�0��

1

2
���U� + ��U��

= V̂�V̂��V�Vfi
�0��

1

2

��U� + ��U�

−
2

d
���� · U� +

1

d
�V�Vfi

�0��� · U ,

�C32�

and a similar analysis of the contribution from
� j=1

s Kij,��v ��V

f j

�0��. Equation �C25� is an inhomogeneous,
linear integral equation, where the inhomogeneity �the right
side� is a linear combination of the the external force and the
gradients of the hydrodynamic fields. The coefficients of
these fields are specified functions of the velocity V. Since
by definition f i

�1� is proportional to the external force and the
gradients of the hydrodynamic fields, it must have the form

f i
�1� → Ai�V� · � ln T + �

j=1

s

Bi
j�V� · � ln nj

+ Ci,���V�
1

2

��U� + ��U� −

2

d
���� · U�

+ Di�V�� · U + �
j=1

s

Ei
j�V� · F j . �C33�

The unknown functions of the peculiar velocity, Ai, Bi
j,

Ci,��, Di, and Ei
j are determined by solving Eq. �C25�. By

dimensional analysis,

Ai�V� = v0
−d�1−dAi

*�V*� ,

Bi
j�V� = v0

−d�1−dBi
j*�V*� ,

Ci,���V� = v0
−�d+1��1−dCi,��

* �V*� ,

Di�V� = v0
−�d+1��1−dDi

*�V*� ,

and

Ei
j�V� = m−1v0

−�d+2��1−dEi
j*�V*� ,

where � is an effective mean free path and Ai
*�V*�, Bi

j*�V*�,
Ci,��

* �V*�, Di
*�V*�, and Ei

j*�V*� are dimensionless functions
of the reduced velocity V*=V /v0, v0=�2T /m being a ther-
mal speed. Consequently,

�t
�0�Ai�V� = − ��0�T�TAi�V� =

1

2
��0��V · „VAi�V�… ,

�C34�

�t
�0�Bi

j�V� = − ��0�T�TBi
j�V� =

1

2
��0��V · „VBi

j�V�… ,

�C35�

�t
�0�Ci,���V� = − ��0�T�TCi,���V�

=
1

2
��0�Ci,�� +

1

2
��0��V · „VCi,���V�… ,

�C36�

�t
�0�Di�V� = − ��0�T�TDi�V� =

1

2
��0�Di +

1

2
��0��V · „VDi�V�… ,

�C37�

�t
�0�Ei

j�V� = − ��0�T�TEi
j�V� = ��0�Ei

j�V� +
1

2
��0��V · „VEi

j�V�… .

�C38�

In addition,

�t
�0�� ln T = ��t

�0� ln T = − ���0�

= −
1

2
��0�� ln T − �

j=1

s

nj
���0�

�nj
� ln nj . �C39�

Since the external force and gradients of the fields are all
independent, Eq. �C25� can be separated into independent
equations for the coefficients of each. This leads to the set of
linear, inhomogeneous integral equations

�
L −
1

2
��0��A�

i
= Ai, �C40�

�LB j�i − nj
���0�

�nj
Ai = Bi

j , �C41�

�
L +
1

2
��0��C���

i
= Ci,��, �C42�

�
L +
1

2
��0��D�

i
= Di, �C43�
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„�L + ��0��E j
…i = Ei

j . �C44�

The linear operator L is

�LX�i =
1

2
��0��V · �VXi� + �LX�i. �C45�

Notice that Eq. �C40� can be used in Eq. �C41� to give the
equivalent representation for the latter

�L„B j − �2nj�nj
ln ��0��A…�i = Bi

j − �2nj�nj
ln ��0��Ai.

�C46�

This completes the CE solution up through first order in
the gradients and first order in the external force. Once Eq.
�6.1� has been solved for f i

�0� the integral equations for Ai,
Bi

j, Ci,��, Di, and Ei
j can be solved for f i

�1�. Then, the cooling
rate, heat flux, and pressure tensor can be calculated as linear
functions of the gradients and the external force, and the
explicit forms for the transport coefficients identified.

APPENDIX D: AN EIGENVALUE PROBLEM FOR L

To simplify and interpret the linear integral equations de-
fining the first order solutions �f i

�1�� it is useful to identify a
special set of eigenvalues and eigenfunctions for the operator
L. Consider the equation for f i

�0�,

− ��0�T�Tf i
�0� = �

j=1

s

Jij
�0��r1,v1�f i

�0�, f j
�0�� . �D1�

Since the temperature occurs through the form �6.10�, the
temperature derivatives can be expressed as velocity deriva-
tives

1

2
��0��V · �Vf i

�0�� = �
j=1

s

Jij
�0��r1,v1�f i

�0�, f j
�0�� . �D2�

Noting that ��0���T, the derivative of this equation with re-
spect to T gives directly

�LT�Tf �0��i =
1

2
��0�T�Tf i

�0�, �D3�

where use has been made of Eq. �C34�, i.e., T�Tf i
�0�=−�V·

�Vf i
�0�� /2. An equivalent dimensionless form is

„L�V · �Vf �0��…i =
1

2
��0��V · �Vf i

�0�� . �D4�

In a similar way, differentiation of Eq. �D2� with respect to
each component of the flow velocity gives

�L�U�
f �0��i = −

1

2
��0��U�

f i
�0�. �D5�

Finally, differentiate Eq. �D2� with respect to each of the
species densities and noting that the density dependence of
all quantities occurs only through the f �0�’s and the 
ij’s, one
gets

�L�n�
f �0��i = �
�n��

j=1

s

Jij
�0��f i

�0�, f j
�0����

f�0�

−
1

2
��n�

��0���V · �Vf i
�0��

=
1

2
��n�

���0�� f�0� − �n�
��0���V · �Vf i

�0��

= − ��n�
ln ��0��
ij

�0�
1

2
��0��V · �Vf i

�0�� . �D6�

This last form can be simplified by taking into account Eq.
�D4� to get

�L„�n�
f �0� + ��n�

ln ��0��
ij
�0��V · �Vf �0��…�i = 0. �D7�

In summary, there are s+d+1 eigenvalues and eigenfunc-
tions of the operator L. Equations �D4� and �D5� identify
these for the eigenvalue ��0� /2 and the d-fold degenerate
value −��0� /2, respectively. Equation �D7� identifies the
eigenfunctions for the s-fold degenerate eigenvalue 0. In di-
mensionless form this eigenvalue problem is written as

�L��m��i = ��m��i
�m�. �D8�

The eigenvectors are

�i
��� = n��n�

f i
�0� − 2n���n�

ln ��0��
ij
�0��i

�s+1�, � = 1, . . . ,s ,

�i
�s+1� = −

1

2
�V · �Vf i

�0��, �i
��� = − v0�V�

f i
�0�, �D9�

with the corresponding eigenvalues

��m� ⇔ 
0, . . . ,0,
1

2
��0�,−

1

2
��0�,−

1

2
��0�,−

1

2
��0�� .

�D10�

These eigenvalues are the same as those of the linearized
hydrodynamic equations in the long wavelength limit. This
provides a direct link between hydrodynamics and the spec-
trum of the linearized Enskog operator. In addition to this
physical interpretation, the eigenvalues and eigenfunctions
allow a practical formulation of the integral equations, as
follows.

1. Biorthogonal set

Define a scalar product by

�a,b� = �
i=1

s 	 dVai
†�V�bi�V� , �D11�

where the dagger denotes complex conjugation. A biorthogo-
nal basis set is then defined by the eigenfunctions �i

�m�

above, and

��i = ��i1

ni
, . . . ,

�is

ni
,
2mi

dm
V*2 − 1�,

mi

�
V*� , �D12�

where V*=V /v0. The orthonormality condition
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�
i=1

s 	 dV*��i�V*��
i�V*� = ��
 �D13�

is easily verified. An associated projection operator is given
by

�PX�i = �
�

��i�V*��
j
	 dV*��j�V*�Xj�V*� . �D14�

It follows from Eq. �D4� that P2=P. The corresponding or-
thogonal projection is

Q = 1 − P . �D15�

Consider the quantity �PLX�i,

�PLX�i = �
�

��i�V*��
j
	 dV*��j�V*��LX� j

= �i
�s+1��V*��

j=1

s
2mj

dm
	 dV*V*2�LX� j . �D16�

Only the projection onto �i
�s+1� contributes due to conserva-

tion of species number and momentum. It follows then that

�PLA�i = 0, �PLB j�i = 0, �PLE j�i = 0, �PLC�i = 0.

�D17�

The terms with A, B j, and E j vanish from symmetry since
these are all vectors; the last equality follows because C has
zero trace. Next, note that

�U� · U = ��1� =
2

dnT
�
i=1

s 	 dv1
1

2
miv1

2�LD�i

−
2

dnT
�
i,j=1

s 	 dv1
1

2
miv1

2Kij,���V�
f j

�0�� ,

�D18�

or equivalently

�i
s+1�U = �2i�

j=1

s 	 dv1� j
s+1L j�D�

− �i
s+1 2m

dnT
�
j=1

s 	 dv1
1

2mdv0
mjv1

2�
p

K jp,���V
�
* f j

�0��

= �2i�
j=1

s 	 dv1�2jL j�D� − P 1

dv0

K���V
�
* f �0��

= PL j�D� + P 1

dv0

K���V
�
* f �0�� . �D19�

This can be used to eliminate the explicit occurrence of the
transport coefficient �U in the integral equation �C43�. Fi-
nally, two additional identities are needed for the proofs of
Appendix E

− �V
�
* f i

�0� p − nT

v0
2�

= P�
j=1

s
1

2v0
Kij,���V* · �V*f j

�0��� ,

�D20�

��V*f i
�0���v0

2��−1nj�nj
�p − nT�

= − P�
�=1

s
1

v0
Ki��
nj�nj

+
1

2
Ii�j� f�

�0�� . �D21�

APPENDIX E: SOLUBILITY CONDITIONS
AND UNIQUENESS

The results of Appendix D allow proof that the integral
equations have solutions and that they are unique. These
equations have the generic form

�L − ��X = X , �E1�

where � is one of the eigenvalues �D10�. Let relation X be a
solution to Eq. �E1�. Then adding any solution to the corre-
sponding homogeneous integral equation also gives a solu-
tion

X� = X + c� , �E2�

where �L−�� �=0. However, the property

�Pf �1��i = �
�

��i�V��
j
	 dv��j�V�f j

�1��V� = 0 �E3�

follows from the fact that the average densities, temperature,
and flow velocity are given exactly by the first order term
f i

�0�, so that contributions to these averages from all higher
order terms must vanish. Equivalently, Eq. �E3� implies

P�
A
B j

C
D
E j
� = 0. �E4�

Consequently, the solution to Eq. �E1� with the condition
�E4� is unique.

To show that solutions exist the integral equations are
written in the equivalent form

�Q
L −
1

2
��0��A�

i
= QAi, �E5�

�QL
B j − 2nj
� ln ��0�

�nj
A��

i
= Q
Bi

j − 2nj
� ln ��0�

�nj
Ai� ,

�E6�

�Q
L +
1

2
��0��C���

i
= QCi,��, �E7�

�Q
L +
1

2
��0��D�

i
= QDi, �E8�
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„Q�L + ��0��E j
…i = QEi

j . �E9�

These equations are the same as Eqs. �C40�–�C44�. The ap-
pearance of the factors of Q simply represent a convenient
rearrangement of those equations, using the identities of Ap-
pendix D. They show that the relevant linear operator is
Q�L−�� where � is one of the eigenvalues �D10�. The or-
thogonal projection Q identifies the left eigenfunctions with
zero eigenvalue as being those of the biorthogonal set ��i in
Eq. �D12�. According to the Fredholm alternative �71�, solu-
tions to these equations exist if and only if the inhomogene-
ity is orthogonal to the null space of the left eigenfunctions.
Here, all the inhomogeneities on the right sides of Eqs.
�E5�–�E9� appear explicitly orthogonal to this null space.
Hence solutions exist and are unique.

APPENDIX F: DETAILS OF CONSTITUTIVE EQUATIONS

The cooling rate, and fluxes of mass, momentum, and
energy are given exactly as explicit integrals of solutions to
the kinetic equation. Once the CE solution is obtained, ap-
proximately to first order in the gradients, these expressions
give the cooling rate and fluxes in the form of the constitu-
tive equations �5.9�–�5.12�. The objective of this appendix is
to simplify these expressions to the extent possible without
making any approximations. This is accomplished in most
cases by performing solid angle integrations using the results

	 d�̂���̂ · g���̂ · g�n = ��d−1�/2
�
n + 1

2
�

�
n + d

2
�gn 
 Bngn,

�F1�

	 d�̂���̂ · g���̂ · g�n�̂ = Bn+1gnĝ , �F2�

	 d�̂���̂ · g���̂ · g�n�̂k�̂� =
Bn

n + d
gn�nĝkĝ� + �k�� ,

�F3�

	 d�̂���̂ · g���̂ · g�n�̂k�̂��̂m = gn Bn+1

n + d + 1
��n − 1�ĝkĝ�ĝm

+ ĝm�k� + ĝk�m� + ĝ��km� ,

�F4�

where d is the dimension �d�2�, and ��x� is the usual
gamma function

��x + 1� = x��x�, �
1

2
� = ��, ��1� = 1. �F5�

In addition, for the sake of convenience, henceforth we will
use the notation g12
g.

To get the collisional transfer contributions to the fluxes,
one has to consider the following expansion:

	
0

1

dxfij„r1 − x�ij,v1,r1 + �1 − x��ij,v2;t… = 	
0

1

dx
ij„r1 − x�ij,r1 + �1 − x��ij��ni�…f i�r1 − x�ij,v1;t�f j„r1 + �1 − x��ij,v2;t…

→ 
ij
�0���ij;�ni��f i

�0��v1;t�f j
�0��v2;t� +

1

2

ij

�0���ij;�ni���f i
�0��v1;t��y


f j
�0��v2;t�

− f j
�0��v2;t��y


f i
�0��v1;t���ij · �y
 + 
ij

�0��f i
�0��v1;t�f j

�1��r1,v2;t�

+ f i
�1��v1;t�f j

�0��r1,v2;t�� + f i
�0��v1;t�f j

�1��r1,v2;t��
ij , �F6�

where �
ij is defined by

�
ij = �
�=1

s

„�r1
n��r1;t�…	

0

1

dx	 dr��r� − r1���
ij„r1 − x�ij,r1 + �1 − x��ij��ni�…
�n��r�,t�

�
�n=0

. �F7�

The functional derivative is evaluated at �n=0 and so it depends only on differences of pairs of coordinates, as in Eq. �C7�.
A change of variables then makes the dependence on x explicit,
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	 dr��r� − r1���
ij„r1 − x�ij,r1 + �1 − x��ij��ni�…
�n��r�,t�

�
�n=0

=	 dr�
r� +
1

2
�ij − x�ij���
ij
−

1

2
�ij,

1

2
�ij��ni��

�n��r�,t�
�

�n=0

= − 
x −
1

2
��ij� �
ij

�0���ij��ni��
�n��r�,t�

�
�n=0

+	 dr�r���
ij
−
1

2
�ij,

1

2
�ij��ni��

�n��r�,t�
�

�n=0

= −

ij

�0�

n�

�ij�
x −
1

2
�n�

� ln 
ij
�0���ij;�nk��
�n�

−
1

2
Iij���ij;�nk��� , �F8�

where Iij���ij ; �nk�� is defined in Eq. �C11�. Finally, then

�
ij =
1

2

ij

�0��
�=1

s

„�r1
ln n��r1;t�… · �ij„Iij���ij;�nk��… .

�F9�

1. Cooling rate

Since � is a scalar, the only gradient contributions are
proportional to � ·U, and Eq. �4.27� to first order in the gra-
dients becomes

� = ��0� + �U� · U , �F10�

with

��0� =
1

2dnT
�
i,j=1

s

�1 − �ij
2 �mi	 ji
ij

�0��ij
d−1

�	 dv1	 dv2	 d�̂���̂ · g���̂ · g�3

�f i
�0��V1�f j

�0��V2� , �F11�

�U =
1

2dnT
�
i,j=1

s

�1 − �ij
2 �mi	 ji
ij

�0��ij
d−1

�	 dv1	 dv2	 d�̂���̂ · g���̂ · g�3

��1

d
f j

�0��V2��ij · �V1
f i

�0��V1� + 2f i
�0��V1�D j�V2�� .

�F12�

Performing the solid angle integrals gives

��0� =
B3

2dnT
�
i,j=1

s

�1 − �ij
2 �

mimj

mi + mj

ij

�0��ij
d−1	 dv1	 dv2g3f i

�0�

��V1�f j
�0��V2� , �F13�

�U =
B4

2d2nT
�
i,j=1

s

�1 − �ij
2 �

mimj

mi + mj

ij

�0��ij
d

�	 dv1	 dv2g2f j
�0��V2�„g · �V1

f i
�0��V1�…

+
B3

dnT
�
i,j=1

s

�1 − �ij
2 �

mimj

mi + mj

ij

�0��ij
d−1

�	 dv1	 dv2g3f i
�0��V1�D j�V2� . �F14�

Finally, an integration by parts in the first term of the veloc-
ity integrals gives the result quoted in the text,

�U = −
d + 2

2dnT
B4 �

i,j=1

s

�1 − �ij
2 �

mimj

mi + mj

ij

�0��ij
d ninj
Ti

�0�

mi
+

Tj
�0�

mj
�

+
B3

dnT
�
i,j=1

s

�1 − �ij
2 �

mimj

mi + mj

ij

�0��ij
d−1

�	 dv1	 dv2g3f i
�0��V1�D j�V2� , �F15�

where the species temperatures are defined by

d

2
niTi

�0� =	 dv
1

2
miV

2f i
�0��V� . �F16�

In the case of mechanically equivalent particles, Eq. �F15�
reduces to previous results obtained for a monocomponent
gas �62,72�.

2. Mass flux

The mass fluxes are determined from the definition of Eq.
�4.16�
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j0i�r1,t� → mi	 dvVf i
�1��r1,v;t�

=
1

d
	 dvmiV · 
Ai�V�� ln T + �

j=1

s

„Bi
j�V�� ln nj

+ Ei
j�V�F j…� , �F17�

where the contribution from f i
�0� vanishes. The transport co-

efficients according to Eq. �5.10� are identified as

Di
T = −

mi

�d
	 dvV · Ai�V� , �F18�

Dij = −
�

mjnjd
	 dvV · Bi

j�V� , �F19�

Dij
F = −

mi

d
	 dvV · Ei

j�V� . �F20�

3. Energy flux

The energy flux to first order in the gradients is obtained
from Eqs. �4.18� and �4.19� as

q = qk + qc. �F21�

The kinetic contribution is

qk = �
i=1

s 	 dv1
1

2
miV1

2V1f i
�1��r1,v1;t�

=
1

d
�
i=1

s 	 dv1
1

2
miV1

2V1 · Ai�V1�� ln T

+
1

d
�
i,j=1

s 	 dv1
1

2
miV1

2V1 · „Bi
j�V1�� ln nj + Ei

j�V1�F j… .

�F22�

The contributions proportional to derivatives of the flow ve-
locity vanish from symmetry. The collisional transfer contri-
bution is

qc = �
i,j=1

s
1

8
�1 + �ij�mj	ij�ij

d 
ij
�0� 	 dv1	 dv2	 d�̂���̂ · g�

���̂ · g�2�̂�− �1 − �ij��	ij − 	 ji���̂ · g� + 4�Gij · �̂��

�� f i
�0��V1�f j

�1��V2� + f i
�1��V1�f j

�0��V2�

−
1

2
f j

�0��V2��y

f i

�0��V1��ij · �y


+
1

2
f i

�0��V1��y

f j

�0��V2��ij · �y
� , �F23�

where Gij 
	ijV1+	 jiV2. The contribution from �
ij in Eq.

�F9� vanishes from symmetry. The angular integrals can be
performed to get

q�
c = �

i,j=1

s
1

8
�1 + �ij�mj	ij�ij

d 
ij
�0� 	 dv1	 dv2�− B4�1 − �ij�

��	ij − 	 ji�g2g� +
4B2

2 + d
�2�Gij · g�g� + g2Gij,��

�„f i
�0��V1�f j

�1��V2� + f i
�1��V1�f j

�0��V2�…

+
B3

3 + d
�− �1 − �ij��	ij − 	 ji�g3�3ĝ�ĝ� + ����

+ 4g2
„�Gij · ĝ��ĝ�ĝ� + ���� + ĝ�Gij,� + ĝ�Gij,�…�

�
1

2
�f i

�0��V1��y

f j

�0��V2� − f j
�0��V2��y


f i
�0��V1����y
� .

�F24�

Interchanging the labels i , j and v1 ,v2 it is seen that the con-
tributions from f i

�1� and f j
�1� are the same. For the same reason

the contributions from �y

f i

�0� and −�y

f j

�0� are the same. The
first terms of the integrand give velocity moments of f j

�1� of
degree one and three, which are proportional to the �partial�
mass and kinetic energy fluxes. Finally, the only contribu-
tions from �y


f i
�0� are those that are scalar functions of the

velocities, i.e., those proportional to temperature and species
density gradients. The final result is therefore

qc = �
i,j=1

s
1

8
�1 + �ij�mj	ij�ij

d 
ij
�0��2B4�1 − �ij��	ij

− 	 ji�ni
 2

mj
q j

k + �d + 2�
Ti

�0�

mimj
j0j

�1��
+

8B2

2 + d
ni
2	 ji

mj
q j

k − �d + 2�
Ti

�0�

mimj
�2	ij − 	 ji�j0j

�1��
+ Cij

T� ln T + �
p=1

s

Cijp
T � ln np� , �F25�

where j0i
�1� is defined by Eq. �F17� and the partial kinetic

energy flux is

qi
k =	 dv

mi

2
V2Vf i

�1��V� . �F26�

The constants Cij
T and Cijp

T are

Cij
T =

B3

d
	 dv1	 dv2�− �1 − �ij��	ij − 	 ji�g3

+ 4g�g · Gij��f i
�0��V1�T�Tf j

�0��V2� , �F27�

Cijp
T =

B3

d
	 dv1	 dv2�− �1 − �ij��	ij − 	 ji�g3

+ 4g�g · Gij��f i
�0��V1�np�np

f j
�0��V2� . �F28�

The expression of Cij
T can be simplified when one takes into

account the relation
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T�Tf j
�0��V� = −

1

2
�V · „Vf j

�0��V�… , �F29�

and integrates by parts in Eq. �F27�. The result is

Cij
T = −

2B3

d
	 dv1	 dv2f i

�0��V1�f j
�0��V2��gGij

2 + g−1�g · Gij�2

+ �1 + 	 ji�g�g · Gij� + 	 ji	ijg
3 +

3

4
�1 − �ij��	 ji − 	ij�

��g�g · Gij� + g3�� . �F30�

On the other hand, no significant further simplification of Eq.
�F28� is possible until f i

�0� is specified in detail.
The heat flux is seen to have the form �5.11�

q�r,t� → − ��T − �
i,j=1

s

�T2Dq,ij� ln nj + LijF j� , �F31�

so the transport coefficients now can be identified,

� = �k + �c, Dq,ij = Dq,ij
k + Dq,ij

c , Lij = Lij
k + Lij

c .

�F32�

The kinetic parts are

�k = �
i=1

s

�i
k = −

1

dT
�
i=1

s 	 dv
mi

2
V2V · Ai�V� , �F33�

Dq,ij
k = −

1

dT2 	 dv
mi

2
V2V · Bi

j�V� , �F34�

Lij
k = −

1

d
	 dv

mi

2
V2V · Ei

j�V� , �F35�

while the collisional transport parts are given by Eqs.
�7.14�–�7.16�.

4. Momentum flux

The momentum flux to first order in the gradients is ob-
tained from Eq. �4.20�–�4.22�,

P�� 
 P��
k + P��

c , �F36�

where

P��
k → �

i=1

s 	 dv1miV1�V1�„f i
�0��V1� + f i

�1��V1�…

= ���nT + �
i=1

s 	 dv1miV1�V1�f i
�1��V1� , �F37�

P��
c =

1

2 �
i,j=1

s

mj	ij�1 + �ij��ij
d 
ij

�0� 	 dv1	 dv2	 d�̂���̂ · g�

���̂ · g�2�̂��̂�� f i
�0��V1�f j

�0��V2� + 2f i
�0��V1�f j

�1��V2�

−
1

2
„f j

�0��V2��y

f i

�0��V1�

− f i
�0��V1��y


f j
�0��V2�…�ij · �y
� . �F38�

A contribution to Eq. �F38� proportional to the density gra-
dients from the expansion of 
ij�r1−x�ij ,r1+ �1−x��ij� van-
ishes from symmetry. For similar reasons, the only gradients
contributing to both Eqs. �F37� and �F38� are those from the
flow field. The terms proportional to Di in Eq. �C33� also do
not contribute due to the orthogonality condition �E4�. The
solid angle integrations can be performed with the results

P��
k → ���nT +

1

2�
i=1

s 	 dv1miV1�V1�Ci,
	�V1�
�
U	 + �	U
 −
2

d
�
	� · U� , �F39�

P��
c = ���

B2

2d �
i,j=1

s

mj	ij�1 + �ij��ij
d 
ij

�0�ninj
Ti
�0�

mi
+

Tj
�0�

mj
� +

B2

d + 2 �
i,j=1

s

	ij�1 + �ij�
ij
�0�ni�ij

d 	 dv2mjV2�V2�C j,
	�V2�
�
U	 + �	U


−
2

d
�
	� · U� +

1

2

B3

3 + d
�
i,j=1

s

mj	ij�1 + �ij�
ij
�0��ij

d 	 dv1	 dv2f j
�0��V2�„�V1�

f i
�0��V1�…

�g2�ĝ�ĝ�ĝ	 + ĝ	��� + ĝ��	� + ĝ���	��	U�. �F40�

An integration by parts in the velocity integral, and use of fluid symmetry gives, finally,

ENSKOG THEORY FOR…. I. NAVIER-STOKES … PHYSICAL REVIEW E 76, 031303 �2007�

031303-25



P��
c = ���

B2

2d �
i,j=1

s
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d 	 dv2mjV2�V2�C j,
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�
U	 + �	U


−
2

d
�
	� · U� −

B3�d + 1�
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i,j=1

s

mj	ij�1 + �ij�
ij
�0��ij

d 	 dv1	 dv2f i
�0��V1�f j

�0��V2�g�
��U� + ��U� −
2

d
���� · U�

+
d + 2

d
���� · U� . �F41�

The pressure tensor therefore has the form �5.12�, and the pressure, shear viscosity, and bulk viscosity are identified in terms
of their kinetic and collisional transfer contributions. Their expressions are given by Eqs. �7.18�–�7.22�, respectively.
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